
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335553704

Concern Metrics for Modularity-Oriented Modernizations

Chapter · August 2019

DOI: 10.1007/978-3-030-29238-6_16

CITATION

1
READS

115

4 authors:

Bruno Santos

Universidade Federal de São Carlos

8 PUBLICATIONS 45 CITATIONS

SEE PROFILE

Daniel Gustavo San Martín Santibáñez

Universidad Católica del Norte (Chile)

17 PUBLICATIONS 80 CITATIONS

SEE PROFILE

Raphael Honda

4 PUBLICATIONS 18 CITATIONS

SEE PROFILE

Valter Vieira de Camargo

Universidade Federal de São Carlos

25 PUBLICATIONS 123 CITATIONS

SEE PROFILE

All content following this page was uploaded by Valter Vieira de Camargo on 11 August 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/335553704_Concern_Metrics_for_Modularity-Oriented_Modernizations?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/335553704_Concern_Metrics_for_Modularity-Oriented_Modernizations?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruno-Santos-28?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruno-Santos-28?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_de_Sao_Carlos?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruno-Santos-28?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Gustavo-San-Martin-Santibanez?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Gustavo-San-Martin-Santibanez?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Catolica_del_Norte_Chile?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Gustavo-San-Martin-Santibanez?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raphael-Honda-2?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raphael-Honda-2?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raphael-Honda-2?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Valter-Camargo-2?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Valter-Camargo-2?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_de_Sao_Carlos?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Valter-Camargo-2?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Valter-Camargo-2?enrichId=rgreq-b717bf9d02d6879d583781af6c19846d-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU1MzcwNDtBUzo5MjMzMjIyMjEwODQ2NzJAMTU5NzE0ODU4MDEzNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Concern Metrics for Modularity-Oriented
Modernizations

Bruno Santos1[0000−0002−0075−801X], Daniel San Martín1[0000−0001−5274−0148],
Raphael Honda1, and Valter Vieira de Camargo1[0000−0002−6439−4649]

Universidade Federal de São Carlos, São Carlos, SP, Brazil
{bruno.santos,daniel.santibanez,raphael.honda,valtervcamargo}@ufscar.br

Abstract. A known problem in legacy systems is the presence of cross-
cutting concerns in their architecture hampering and increasing the main-
tenance costs. A possible solution for that is the conduction of modularity-
oriented modernization aiming at restructuring the legacy software sys-
tem in order to improve its artifacts (source code, database, others)
quality. Architecture-Driven Modernization (ADM) is focused on mod-
ernizing legacy software systems by using the concepts of model-driven
architecture, software reengineering and standard metamodels. Knowl-
edge Discovery Metamodel (KDM) is a standard from ADM that is able
to represent software systems by means of KDM instances that are go-
ing to be modernized. An intrinsic part of the modernization process
is to measure both KDM versions, the legacy and the modernized one.
The measurement of legacy KDM instances enables the software engi-
neer to quantify the existing problems while the measurement of the
modernized one enables to verify whether the problems have been solved
or not. Structured Metrics Metamodel (SMM) is a metamodel that can
be used to specify metrics to be applied on KDM instances. However,
even though most of the well known metrics are supported by SMM,
there is no study that investigate how SMM could be used to specify
concern metrics. We present how SMM can be used to specify concern
metrics and a tool to support this measurement process, enabling the
conduction of modularity-oriented modernizations to help ensuring the
quality of the modernization process. Furthermore, we also discuss some
challenges to be overcome involving the quality measurement process in
ADM blueprint.

Keywords: Software Modernization ·Metrics ·Architecture-Driven Mod-
ernization · Structured Metrics Metamodel · Knowledge Discovery Meta-
model.

1 Introduction

Software systems become legacy when their maintenance and evolution cost
increasingly rise to unbearable levels, but they still deliver great and valuable
benefits for companies [12]. An alternative to the aforementioned problem is
software reengineering. Nowadays, we have a more updated methodology to deal

2 Santos et al.

with software reengineering that is Architecture-Driven Modernization (ADM),
where the software goes through a reengineering process by using models as can
be seen in Model Driven Architecture (MDA). ADM was started in 2003 by the
ADM-Task Force (ADMTF), an OMG initiative to use MDA concepts in the
legacy software modernization context. The ADM’s main goals are to provide a
set of standard metamodels to support software modernization and to support
software engineers while performing modernization projects by means of enabling
the creation of reusable and interoperable modernization tools (MTs) [3]. MTs
support the automation of at least one of the modernization tasks by following
ADM concepts [10].

Among the metamodels proposed by OMG are both Knowledge Discovery
Metamodel (KDM), and the Structured Metrics Metamodel (SMM). By Means
of KDM it is possible to represent all software artifacts present in a legacy system,
such as source code, graphic user interface (GUI), databases, configurations files,
architecture and higher level abstractions [7]. On the other hand, The SMM
Metamodel can be used to represent both metrics and metrics results and its
advantage is to facilitate the reuse of metrics definitions, tool interoperability and
sharing of metrics results that helps in the process of software quality assurance
while using models/metamodels instances. KDM and SMM are platform and
language independent so modernization tools that consider them can be reused
in different modernization projects.

In a modernization process, normally, there are the “as-is" and the “to-be"
software, e.g. the legacy and the target software. Performing measurements is
important to plan and estimate how to deal with the modernizations refactor-
ings. The Aspect-Oriented Programming (AOP) is an existing alternative when
the goal is to conduct a modernization process to deal with crosscutting con-
cern modularization. Crosscutting concerns are software concerns which could
be scattered and tangled over the legacy software code, like persistence, logging,
security and others. Thus, this research deals with metrics and a measurement
approach to collect data about crosscutting concerns in a modernization process
that uses ADM approach. To do this, KDMmodels need to be annotated/marked
by concern mining tools, like Crosscutting Concern KDM (CCKDM) tool [8].
The main goal of this research is to measure the legacy software searching for
relevant information about the diffusion of the crosscutting concerns and also
to measure the target software, to investigate if the target software quality is in
conformance with the planning.

As a motivation, we can mention the scarcity of approaches for measuring
KDM models using SMM models [4], that is, the usage of existing metrics trans-
lated to be used in ADM context by means of SMM. Another motivation was
the feasibility study of the definition and computation of concern measures in
SMM instances to be applied in KDM instances.

To achieve the main goal of this research, we used the approach of Santos et
al. that enables the representation of aspect-oriented systems in KDM models
[11]. Once we could represent both the legacy and the target software in AOP we
used concern metrics to measure them and collect important information to the

Concern Metrics for Modularity-Oriented Modernizations 3

software engineer. This process is performed with help of a modernization tool
that is able to measure KDM and/or KDM-AO (Aspect-Oriented KDM) models
and generate metrics results. To perform the measurements, we used two known
metrics; Concern Diffusion over Operations (CDO) and Concern Diffusion over
Components (CDC) [9].

An important step of the approach here presented is the implementation of
a parameterization system for the users in order to set which crosscutting con-
cerns are going to be measured, for instance: Persistence, Logging, Security, and
others. Another important point is to understand how these concerns had been
annotated by the previously used concern mining tool, since a KDM model could
be marked/annotated with tags that might look like “concern=persistence" or
“cc=persistence", thus, this parameters need to be informed [8]. All the process,
measurements and tools used in this paper are detailed in the following sections.

Summing up, the goal of this paper is to study the feasibility of the concern
measurements in the ADM context and to define a tool support to apply concern
measures over KDM Metamodel instances. To achieve this goal, we performed
the following activities: Reuse an approach that could represent AOP in KDM
models, define a SMM Metrics Library that represents concern measures, and
implement a tool for applying SMM metrics in KDM and aspect-oriented KDM
(KDM-AO) instances.

The main contribution of this paper is a research about concern measurement
and its feasibility in the ADM context, a SMM Concern Metrics Library, and a
tool that applies the quality metrics approach in KDM and KDM-AO instances.

This paper is organized as follow: Section 2 describes the background about
ADM and its metamodels (SMM and KDM). In Section 3, Modularity-Oriented
Modernization is presented. Section 4 describes the specification Concern Metrics
for ADM. Section 5 shows the Tool Support. Section 6 presents an Execution
Engine and Metrics Library case study. Section 7 presents related works. Finally,
Section 8 presents the conclusion about this research.

2 Architecture-Driven Modernization

Architecture-Driven Modernization (ADM) is an approach where the software
goes through a reengineering process using models. The main ADM goal is to
develop a set of standardized metamodels to represent all the information ex-
isting in a modernization process. KDM and SMM are two of a set of standard
metamodels of ADM.

According to the OMG the most important artifact provided by ADM is the
KDM metamodel, which is a multipurpose standard metamodel that represents
all aspects of the existing information technology architectures. The idea behind
the standard KDM is that the community starts to create parsers from differ-
ent languages to KDM. As a result everything that takes KDM as input can
be considered platform and language-independent. For example, a refactoring
catalogue for KDM can be used for refactoring systems implemented in different

4 Santos et al.

languages [11]. The current version of the KDM is 1.4 and it is being adopted
by ISO as ISO/IEC 19506 [7].

SMM is the ADM Metamodel responsible to provide metaclasses to define
metrics. A SMM Model could represent a metric definition or a measurement
result. Because SMM is a standard, metrics definition and measurements re-
sults can be exchange between engineers and can be reused in several projects.
The main SMM terms are: measures (metrics) and measurements (models that
contains metrics application results). A SMM Measure Model is a model that
contains metrics definitions. A SMM Measurement Model is a model that con-
tains the results of a specific measurement instance. To apply SMM Measure
Model into KDM Model, we need a tool that receives as input: a XMI File
that contains SMM Measures and XMI (one or more) Files that contains KDM
instances

Fig. 1. The Approach of the SMM Metamodel

To work with SMM metamodel you need to instantiate some important SMM
metaclasses, as you can see in Figure 1, the minimum requirement to use SMM in
a modernization process is to instantiate a Measure, an Observation (Metaclass
that represents measurements information, like data, engineer name and tool
name), and a measurement, that will be performed in KDM models or any
model based on meta object facility OMG metamodel. All metrics instantiation
have some attributes: Name, Description, Scope, Characteristic, Operations, etc.
Scope is the name of the Metaclass that will be measured. Characteristic is for
example: Size, when the goal of the measure is to calculate index related to
system size and Operation contains the operation that will be applied in the
target model to collect indexes, for example, an OCL Code or XPath code.

3 Modularity-Oriented Modernization (MOM)

KDM-AO is a heavyweight extension for KDM that contains new metaclasses,
like AspectUnit, AdviceUnit and PointCutUnit [11]. These and others new meta-
classes that were introduced into the KDM Metamodel allow the creation of in-
stances of AOP Software. Thus, it is possible to use this programming paradigm
in ADM.

Figure 2 presents the modernization scenario, entitled as Modularity-Oriented
Modernization. The main goal is to convert a legacy system (A), which contains

Concern Metrics for Modularity-Oriented Modernizations 5

Target
System

Target KDM
(Aspect
Oriented)

F
o

rw
a
rd

 E
n

g
in

e
e
rin

gR
e
v
e
rs

e
 E

n
g

in
e
e
ri

n
g

Refactorings

Model-to-code
Transformation

Legacy
Annotated
KDM

CCKDM Mining
Process

Legacy
System

Code-to-model
Transformation

Restructuring

CMEE + CCML

CMEE + CCML

CCKDM Mining
Process

Result
CDO: 10
CDC: 8

Result
CDO: 254
CDC: 29

Measurement Process Using CCML

If the measurement
requirement do not met

A K

I

J

H

G

F

E

D

B

C

L1 L2

Legend

Process
Artifact Mandatory flow

Optional flow

Fig. 2. Modularity-Oriented Modernization Scenario (MOM)

bad modularized concerns, into a new aspect-oriented version (K) where the
concerns are then well modularized by using proper abstractions.

In order to perform this modernization process, two requirements must be
met. The first one is to have a way of making the concerns evident in the KDM
models representing the legacy system. That means pinpoint which model ele-
ments (classes, methods, attributes, etc) are affected or contribute to the im-
plementation of given concerns - this process is known as concern mining [8].
To make them evident, we can use annotations, stereotypes, etc. The second
requirement is to have a way of representing aspect-oriented concepts in KDM
models. This is necessary for the target model, as it should be able to represent
a solution for the crosscutting problem. There are basically two ways of doing
that, by employing lightweight extensions or heavyweight ones. In our case, we
opted for reusing a heavyweight aspect-oriented KDM extension [11].

Once these two requirements are met, we are able to conduct the whole pro-
cess. That is, firstly we can apply a measurement process in the legacy annotated
KDM to figure out the current modularity problems. Secondly, once we have an
aspect-oriented KDM instance representing the target system we can mine it
again, annotating and measuring it in order to check whether the modularity
problems were solved.

In Figure 2, this process is explained in more details. It starts with the
automatic transformation of a legacy source code into a KDM instance (B).
This process is performed automatically by MODISCO [1]. As the Legacy KDM
contains information about the legacy system, it’s necessary to discover what
components, operations and attributes contribute to the implementation of a
concern. To carry out this mining process (C), we use CCKDM (Concern Mining
KDM) [8], a mining tool that annotates KDM model elements that contribute
to the implementation of certain concerns. Listing 1.1 shows an example of an
annotated KDM model where the annotation is highlighted.

6 Santos et al.

<codeElement concern="Persistence" xsi:type="code:MethodUnit" name="connectionDB"...>

. <attribute %tag="export" value="private"/>

. <source language="java">

. <region file="/0/@model.2/@inventoryElement.16" language="java"/>

. </source>

. <codeElement xsi:type="code:Signature" name="ConnectionDB">

. . <parameterUnit type="/0/@model.o/@codeElement.0/@codeElement.0/@codeEle...">

. . <source language="java">

. . <region language="java"/>

. . </source>

. . </parameterUnit.

. </codeElement>

...
</codeElement>

Listing 1.1. Snippet of an annotated KDM model

In this case, CCKDM identified a MethodUnit that is affected by the persis-
tence concern. Notice that the way CCKDM adopts for annotating the models is
by using the annotation “concern”. In this example, there is a MethodUnit anno-
tated with <concern=“Persistence”>. Therefore, since the models are annotated
we can measure based on these annotations and answer questions as “How many
operations implement something about persistence?”.

After the code-to-model transformation (B), the CCKDM mining (C) pro-
duces a Legacy Annotated KDM (D) to be measured by Concern Metrics Ex-
ecution Engine (CMEE) and Crosscutting Concern Metrics Library (CCML)
approaches (E). CMEE is an eclipse plug-in for applying metrics in a KDM
instance. The metrics must be specified by using a SMM model.

Table 1 presents an example of crosscutting concern metrics library with the
name of the measure, its scope and unit. CDO and CDC are described in the
next section. Concern diffusions over LOC (CDLOC) is the number of transition
points for each concern; transition points are points in the code where there is
a “concern switch”. Disparity and Concentration metrics quantifies the closeness
between program components (such as files or functions) and features.

Table 1. Crosscutting Concern Metrics Library (CCML)

CC_MetricsLibrary.smm (physical file)
Model
MeasureLibrary
Measure Scope Unit ...
CDO AdviceUnit/MethodUnit Affected Operations ...
CDC Aspect/Class/InterfaceUnit Affected Components ...
CDLOC SourceRegion Affected SourceRegion ...
Disparity Aspect/Class/InterfaceUnit Affected Components ...
Concentration Aspect/Class/InterfaceUnit Affected Components ...
...

Concern Metrics for Modularity-Oriented Modernizations 7

The result of this step is a set of metrics calculated (L1). Based on these re-
sults, the modernization engineer needs to decide what refactorings (F) should be
applied in order to improve the crosscutting concerns modularization. Then, af-
ter the refactorings, the KDM-AO Models (since now they also represent aspect-
oriented concepts) needs to be mined (G) and measured again (H), to collect
new information about the modularization (L2). If the engineer agrees with the
results, then the KDM-AO Models will be transformed into source-code (I and
K). If the engineer is not satisfied with the results (J), the process returns to
the step (F) again.

4 Specifying Concern Metrics for ADM

In this section the goal is to present how SMM can be used to specify concern
metrics. We chosen CDO (Concern Diffusion over Operations) and CDC (Con-
cern Diffusion over Components) metrics because they are specific to measure
separation of concerns [9]. CDO purpose is to measure the diffusion of a concern
over operations, like methods and advices. CDC measures the diffusion of a con-
cern in the system’s components, like Classes, Interfaces and Aspects. These two
metrics give to the modernization engineer an overview about concern diffusion
over the system. In the following, we will explain how to define these metrics in
SMM models.

The fields that you need to fill in the SMM Editor to define the CDO Metric
are the following: name, label, description, trait (what characteristic this metric
measures?), Scope (what is the target of the metric?), label format, Categories,
Operation (the code that will be applied in the target KDM Model), Unit (what
the Unit is used in this metric? For example: meters, kilometers, kilo, etc).

The element Operation is one of the most important. This element contains
the code that will be applied in the target KDMModel. Thus, it is very important
to know how to develop an Operation. All Operation has a name, a description,
a language (what language you will use to define the operation?) and body (the
body of the operation, where you need to put the code). In this case, we decide to
use XPath to write CDO and CDC Operation code. SMM Specification by OMG
uses OCL in their examples. In this paper, the choice of XPath for implementing
the Operation Code (rather than using OCL) has been made by the author
because of their XPath expertise. XPath is a directory language that you can
use to query KDM or any MOF-Based Model (A model that is based on the
meta-metamodel MOF).

Table 2 depicts the body of CDO and CDC Operations. The goal of these
codes is to query the target KDM Model in order to collect data about concern
diffusion. CDO retrieves instances of methods and advices of a KDM model that
were annotated with a specific tag name and tag value. Similarly, CDC retrieves
instances of classes, interfaces and aspects of a KDM model that were annotated
with a specific tag name and tag value. Note that tag names and tag values are
parameters which can be settled through CMEE in order to capture a specific
concern.

8 Santos et al.

Table 2. CDO and CDC Operation Definition

Metric Language Body

CDO XPath //codeElement=’code:MethodUnit’ and [@tagName=’tagValue’] or
//codeElement=’code:AdviceUnit and [@tagName=’tagValue’]

CDC XPath
//codeElement=’code:ClassUnit’ and [@tagName=’tagValue’] or
//codeElement=’code:InterfaceUnit and [@tagName=’tagValue’] or
//codeElement=’code:AspectUnit and [@tagName=’tagValue’]

For instance, it is possible to set “tagName” and “tagValue” with “concern”
and “Persistence” respectively, then CMEE will replace these parameters and
apply the operation. Listing 1.2 shows the case for the CDO operation and
Figure 3 depicts the Object Diagram that is an instance of KDM that represents
CDO Metrics [9].

//codeElement="code:MethodUnit" AND [@concern="Persistence"] OR
//codeElement="code:AdviceUnit" AND [@concern="Persistence"]

Listing 1.2. Replaced parameters CDO Operation

Fig. 3. CDO Object Diagram

In the Object Diagram we have instantiated some important metaclasses, like
Counting. Counting is a specialized measure class that serves to define metrics
for counting, such as the number of operations affected by some specific cross-
cutting concern. If we decide to measure more than one target model, we could
instantiate CollectiveMeasure metaclass, that applies an operation (sum, aver-
age, maximum value, minimum value, etc) to a Counting measurement results.

It is not always possible to define concern metrics faithfully using the ADM
metamodels. This is the case of the CDLOC [9]. This metric measures the imple-
mentation alternation of concerns between lines of code, but in KDM, there is

Concern Metrics for Modularity-Oriented Modernizations 9

no element that represents a line of code, but there is an element that represent
a region of the source code.

Fig. 4. CDLOC Object Diagram

Thus, it was necessary to adapt this metric to measure SourceRegion elements
instead of Lines of Code. This adaptation can be seen in Figure 4, where we can
see that the code makes mention for an Operation element that searches for
SourceRegion elements. To define our Concern Metrics Library we have used
MoDisco SMM Editor. This editor is part of MoDisco Framework [2] and allows
creating SMM metrics models using graphic elements. The library structure is
shown in the Table 1.

In Table 1 it is possible to see the structure of our metrics library. This
library was developed with the objective to group a set of concern metrics.
The library in contained inside the CC_MetricsLibrary.smm physical file, and
contains the following elements: Model (the main element, that represents a
SMM Model), Library (our concern metrics library), Measures (organized by
Category, Characteristic or Scope), Operations (contains the OCL or XPath or
XQuery code that will be applied in the target KDM Model). All these elements
are useful when the engineer wants to search metrics or measurement results in
a repository.

5 Tool Support

In this section we show how CMEE (Concern Metrics Execution Engine) works.
To help in the understanding process, we have created an UML Activity Diagram
with the flow to be executed that can be seen in Figure 5. The flow starts when
the Modernization Engineer (User) opens the CMEE Plugin on Eclipse IDE.
In the first action, User needs to choose the .SMM Model file and one or more

10 Santos et al.

Fig. 5. Concern Metrics Execution Engine – CMEE Activity Diagram

.KDM Model. If any of these models is not well-formed CMEE will detect and
return to the first phase. Since all models are ready, the next step is choosing
one measure to apply on KDM Model and choosing a directory to save the
measurement results file.

Then, User need to inform if the target KDM Model is an Annotated model
(previously mining) or just a KDM Model, without annotations (See Figure 6).
If the KDM Model contains Annotations, it will be necessary to inform the
parameters and CMEE will replace this information on the Operation Code, for
instance: if the user had used a concern mining tool that annotated the KDM
models with the following pattern “concern=concern_name” and the user is also
using our parameterized metrics, it will be necessary to inform CMEE that the
meta tag name is “tagName”, the meta tag value is “tagValue”, then, it will
necessary to inform the tag name value, like “concern” and the concern name for
tag value, like “persistence”. The CMEE allow the inclusion of multiple patterns
of annotations simply by clicking on the symbol with the add button.

Finally, the user needs to provide some information about the measuring
process, like engineer name and date, then click on the button “Apply Measure”
and see the results.

6 Execution Engine and Metrics Library Case Study

To validate and exemplify the use of the CMEE, we decide to measure KDM
models of a system named CD Store. This system was written in Java and serves
to manage a store that sells CD/DVD. This case study has two parts. In the first
part, we have applied the CDO and CDC metrics [9] on the legacy CD Store
KDM Models and, in the second part, we have applied CDO and CDC Metrics
in KDM-AO modernized models.

Concern Metrics for Modularity-Oriented Modernizations 11

Fig. 6. CMEE Screen – Tag parametrization

Legacy CD Store uses an Object-Oriented Framework to persist data on
database. The problem is that a big number of classes in the application im-
plements actions related to persistence. Therefore, the modernization aims to
change this OO Persistence Framework for an AO Persistence Framework, in
order to remove persistence implementation from the base application.

To discover where the crosscutting concern “persistence” is, we have used
the CCKDM Tool [8] to mining concerns in our CD Store KDM and KDM-AO
Models. Then we use our tool CMEE to measure the models using CDO and
CDC. The CDO and CDC Indexes can be seen in Table 3. Note that before the
modularity-oriented modernization process, the Base Application CD Store had
a lot of persistence code in its classes and after these numbers decrease a lot,
leaving only the Persistence AO Framework implementing the persistence of the
application.

Table 3. Case Study Measurement Results - CDO and CDC Indexes Before and After
Modernization

Application Metric Application CDO CDC
Base App Before 13 13

After 1 1
Persistence Framework Before 87 14

After 87 19

12 Santos et al.

This kind of measurement helps the engineer to discover if the ADM mod-
ernization process was effective or not. In this case, the base app CD Store has
been modernized successfully, because the diffusion of the concern “persistence”
decreases from 13 to 1. But, if the engineer is not satisfied with the indexes, he
can reapply the refactorings and then measure again. Notice that the Persistence
Framework did not have a significant change since its purpose was to perform
the persistence of the application.

7 Related Works

The oldest approach found was METRINO [6], a tool that works in four phases.
In the first, named “Rule Management”, the user could define a rule or use an
existing rule. In the second phase, named “Measure Generation”, metric models
are generated based on the previously defined rules. In the third phase, named
“Measure Management”, it is possible to change the automatically generated
metric models. Then, in the last phase, named “Measure Evaluation”, METRINO
applies the selected metrics (selected by the user) on the MOF-based target
models.

Another related approach is Gra2Mol Motor [3]. The mechanism Gra2Mol
receives as input metrics defined in a DSL (Domain Specific Language) named
Medea and KDM files to apply the metrics. The tool has a translator that
transforms Medea code in SMM Measures and then apply the selected measures
in the KDM Model that represents the system.

And the last related approach found was MAMBA Framework (Measure-
ment Architecture for Model-Based Analysis) [5]. MAMBA could receive both
SMM and MDL Files. MDL (metrics definition language) is a DSL developed
by MAMBA Team to facilitate the process of creating SMM Metrics files. As
with other approaches, it is necessary to put a KDM File to measure and then
the MAMBA Execution Engine starts the measurement process and generates
an output SMM File.

It’s important to emphasize that none of the related works can interpret
aspect-oriented metrics and parameterized concern metrics.

8 Conclusion

By means of this research it is fairly evident that our approach fills a gap in the
ADM context. Now, it is possible to measure Aspect-Oriented Software repre-
sented in KDM Models using Concern Metrics, like CDO and CDC.

We argue this approach is useful in modernization scenarios to improve the
modularization of software systems, for instance, a modernization process that
applies refactorings in order to modularize the persistence code which is scattered
and tangled over operations, components and/or lines of code.

With our approach the Modernization Engineer could use SMM models with
XPath Operations Code to collect data about crosscutting concerns and other

Concern Metrics for Modularity-Oriented Modernizations 13

metrics. Note that KDM model measurements is different to measurements in
the source code. KDM models are versatile and can have multiple levels of ab-
straction, but cannot represent lines of code, for example.

We can also mention that measure crosscutting concerns is not something
native on KDM, so it had to be extended (KDM-AO) and annotated by a cross-
cutting concern mining tool and then it could be measured.

This type of measurement (concern measurements) requires that the Opera-
tions of SMM metrics to be dynamic enough so that the user can specify which
concern is required to be measured and how the mining tool annotate KDM
models, that is, which annotation pattern the mining tool uses.

The CMEE tool supports multiple sets of parameters and can accept even
one, two or more patterns of annotations in KDM target model. Thus, as a
limitation for this research we can mention the need for prior concern mining of
target models. To measure crosscutting concerns it is necessary to know where
they are implemented. Therefore, mining techniques and tools should be used
mandatory.

The dependence of the extension KDM-AO for representing aspect oriented
software systems is another limitation for the reuse of metrics since our pre-
defined parameterized metrics mention some terms like “AspectUnit" and “Ad-
viceUnit" that is a particularity of our extension. Another limitation is the de-
pendence of MoDisco tool to represent java source code, which so far does not
have support for all KDM packages.

As a future work, we will perform a more in-depth evaluation of the approach
and tool, involving real systems developed in different programming languages
and software engineers from industry to evaluate whether the SMM instances
are generic enough to measure different instances. Another future work is to
enrich the SMM metrics library with other quality metrics and also to improve
the output results in order to provide useful reports that could help software
engineers in the decision making process.

9 Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by FAPESP
process number 2016/03104-0. We also would like to thank CONICYT PFCHA/-
DOCTORADO BECAS CHILE/2016 - 72170024.

References

1. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: Modisco: A generic
and extensible framework for model driven reverse engineering. In: Proceed-
ings of the IEEE/ACM International Conference on Automated Software
Engineering. pp. 173–174. ASE ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1858996.1859032

14 Santos et al.

2. Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: Modisco: A model driven reverse
engineering framework. Information and Software Technology 56(8), 1012 – 1032
(2014). https://doi.org/10.1016/j.infsof.2014.04.007

3. Canovas Izquierdo, J., Zapata, B., Molina, J.: Definición y ejecución de métricas en
el contexto de adm. In: Taller sobre Desarrollo de Software Dirigido por Modelos
(DSDM). pp. 1–10 (2009)

4. Durelli, R.S., Santibáñez, D.S.M., Marinho, B., Honda, R., Delamaro, M.E., An-
quetil, N., Camargo, V.V.: A mapping study on architecture-driven moderniza-
tion. In: Proceedings of the 2014 IEEE 15th International Conference on In-
formation Reuse and Integration (IEEE IRI 2014). pp. 577–584 (Aug 2014).
https://doi.org/10.1109/IRI.2014.7051941

5. Frey, S., Hoorn, A., Jung, R., Kiel, B., Hasselbring, W.: Mamba: Model-based
software analysis utilizing omg’s smm. Softwaretechnik-Trends 32(2), 49–50 (2012)

6. Hein, C., Engelhardt, M., Ritter, T., Wagner, M.: Generation of formal model
metrics for MOF based domain specific languages. ECEASST 24 (2009).
https://doi.org/10.14279/tuj.eceasst.24.339

7. Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Knowledge dis-
covery metamodel-iso/iec 19506: A standard to modernize legacy sys-
tems. Computer Standards & Interfaces 33(6), 519 – 532 (2011).
https://doi.org/10.1016/j.csi.2011.02.007

8. San Martín Santibáñez, D., Durelli, R.S., Camargo, V.V.: A combined approach for
concern identification in kdm models. Journal of the Brazilian Computer Society
21(1), 10 (Aug 2015). https://doi.org/10.1186/s13173-015-0030-3

9. Sant’anna, C., Garcia, A., Chavez, C., Lucena, C., v. von Staa, A.: On the
reuse and maintenance of aspect-oriented software: An assessment framework.
In: Proceedings XVII Brazilian Symposium on Software Engineering (2003),
http://twiki.im.ufba.br/pub/Aside/NossasPublicacoes/sbes2003-135.PDF

10. Santos, B.M., de Guzmán, I.G., Camargo, V.V., Piattini, M., Ebert, C.: Soft-
ware refactoring for system modernization. IEEE Software 35(6), 62–67 (November
2018). https://doi.org/10.1109/MS.2018.4321236

11. Santos, B.M., de S. Landi, A., Santibáñez, D.S., Durelli, R.S., Camargo, V.V.:
Evaluating the extension mechanisms of the knowledge discovery metamodel for
aspect-oriented modernizations. Journal of Systems and Software 149, 285 – 304
(2019). https://doi.org/10.1016/j.jss.2018.12.011

12. Visaggio, G.: Ageing of a data-intensive legacy system: symptoms and remedies.
Journal of Software Maintenance and Evolution: Research and Practice 13(5),
281–308 (2001). https://doi.org/10.1002/smr.234

View publication stats

https://www.researchgate.net/publication/335553704

