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Abstract—An adaptive system (AS) evaluates its own behavior
and changes it when the evaluation indicates that the system
is not accomplishing what it is intended to do, or when better
functionality or performance is possible. MAPE-K is a reference
model that prescribes the adaptation mechanism of ASs by
means of high-level abstractions such as Monitors, Analyzers,
Planners and Executors and the relationships among them. Since
the abstractions and the relationships provided by MAPE-K
are generic, other reference models were proposed focusing on
providing lower level abstractions to support software engineers
in a more suitable way. However, after the analysis of seven
representative ASs, we realized the abstractions prescribed by
the existing reference models are not properly implemented,
thus leading to architectural drifts. Therefore, in this paper we
characterized three of these drifts by describing them with a
template and showing practical examples. The three architectural
drifts of ASs are Scattered Reference Inputs, Mixed Executors
and Effectors, and Obscure Alternatives. We expect that by
identifying and characterizing these drifts, we can help software
architects improve their design and, as a consequence, increase
the reliability of this type of systems.

Index Terms—architectural drifts, adaptive system, mainte-
nance

I. INTRODUCTION

An adaptive system (AS) evaluates its own behavior and
changes it when the evaluation indicates it is not accomplish-
ing the established goals, or when better functionality or per-
formance is possible. Nowadays, this type of system is critical
in many application domains due to their autonomous nature,
and due to their efficiency to address complex situations [1].

It is recognized in the software engineering field the impor-
tance of structuring a system in such a way that abstractions
and concerns become clear and evident in its architecture,
since this can severally impact the maintenance activities [2].
MAPE-K is a reference model proposed by IBM [3] that
provides the main abstractions for designing ASs. The goal
is to motivate software engineers in structuring ASs in such a
way that the abstractions become evident and manageable.

According to MAPE-K, ASs can be semantically seen as
two subsystems: the Managed and the Managing Subsystems.
The first one implements the main functionalities, while the
second one implements the logic for adapting the Managed
one. MAPE-K is originally presented with four abstractions:
(i) Monitors sense the Managed Subsystem and its context,
filters the accumulated sensor data, and stores relevant events

in the knowledge base for future reference; (ii) Analyzers
compare event data against patterns in the knowledge base
to diagnose symptoms and stores the symptoms for future
reference in the knowledge base, (iii) Planners interpret the
symptoms and devise a plan; and (iv) Executors execute the
change in the Managed Subsystem through its effectors [4].

Besides the canonical abstractions prescribed by MAPE-K,
there are other low level abstractions equally important for
reaching good levels of maintainability. As these abstractions
are not evident in MAPE-K, software architects are not aware
of them and usually do not consider them when architecting
the system [5]. Examples of these abstractions are Reference
Input, Measured Output and Alternatives [6] [7]. Reference
Inputs represent control objectives (values, thresholds, etc) that
must be reached by the system. Measured Outputs consist of
indicators of requirements convergence [6], [8]. Alternatives
is the set of alternatives for performing a unique task [9].

After analyzing some representative ASs, we have observed
that, very often, the implementation of the abstractions (as
the MAPE-K as the lower level ones) are scattered and
tangled throughout the system. Although there are frameworks,
APIs and reference models to assist the development of ASs,
most of times they do not guarantee the adherence of the
implementation to a reference model [10], [11]. Therefore, the
little knowledge about these abstractions and the nonexistence
of guidelines about how to design them leads to architectural
drifts, that occurs when the logical architecture (source code
organization) of a system presents differences of the prescribed
reference model [12] for that type of system.

In this paper we present the characterization of three drifts
we believe being recurrent in ASs. By characterizing these
drifts we are not only making evident existing problems; we
are also promoting the importance of these abstractions. Our
characterization scheme provides a name for the drift, presents
the quality attributes impacted, lists the potential reasons for
its emergence, explains ways of how to identify them.

We have analyzed seven representative ASs, where four of
them were taken from SEAMS conference. We have observed
that these drifts occur in all of them. The drifts characterized
in this paper are named Scattered Reference Inputs, Obscure
Alternatives and Mixed Executors and Effectors. Scattered
Reference Inputs occurs when reference input of the managing
subsystem are not declared in a unique abstraction. Obscure
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Alternatives occurs when the alternatives of an AS are not
evident. Finally, Mixed Executors and Effectors arises when
there is not a clear distinction between executors and effectors.
We opted for characterizing drifts involving lower level ab-
stractions because these ones are much less studied and evident
in the literature.

This paper shows that although MAPE-K reference model is
a well known model for designing the architecture of an AS,
it lacks of appropriate guidelines for developers when they
need to implement key architectural low-level abstractions,
emerging some problems as the drifts we characterized. Also,
we present a methodology for discovering architectural drifts
that can be used in other domains.

The main contributions of this paper are: i) providing a
catalog that documents typical drifts of ASs; ii) Exploring
some abstractions (and ways of implement them) of ASs that
are not so well known as the canonical ones from MAPE-K.
iii) delivering a standardized way of communicating problems
when designing adaptive systems.

The work is organized as follows. Section II presents a brief
background concepts. Section II-B describes our reference
model. In Section III, the three drifts are characterized, and
Section IV-C presents a practical example of them. Section V
summarizes related work, and Section VI brings a discussion
and the conclusion about the drifts.

II. BACKGROUND

This section summarizes the basic concepts addressed in
this paper.

A. Abstractions of Adaptive Systems Architectures

Reference models express a fundamental structural orga-
nization schema for software systems, providing a set of
predefined abstractions, specifying their responsibilities, and
including rules and guidelines for organizing the relationships
between them [13]. Software engineers can decide to follow
or not these models, or use specific ones according to their
needs. Of course, the choice of not using a reference model
could impact several quality attributes as the system evolves.

MAPE-K is a high level reference model that presents the
main abstractions that exist in the architecture of ASs. It was
introduced by Kephart and Chess [14] and IBM [3], being the
first proposal of how to architect ASs taking into consideration
Control Loops (CLs) [15]. The main abstractions proposed
by MAPE-K are Monitors, Analyzers, Planners and Executors
[4].

Figure 1 illustrates the schematic view of MAPE-K with
its main abstractions for (i) monitoring data collected from
sensors; (ii) analyzing the monitored data; (iii) creating plans
for the adaptations, and (iv) executing the adaptation by means
of actuators. All these steps (or actions) share a knowledge
base about the system that is being adapted. In addition, an
AS could implement more than one CL because each one of
them could handle a specific adaptation goal.

Besides to the main abstractions, there are others that are not
represented in the MAPE-K reference model, but have been

Sensor Actuator

Managed Element

Analyze Plan

ExecuteMonitor
Knowledge

Control Loops Manager

Fig. 1. MAPE-K schematic view (Adapted from [3])

reported by other researchers. These other are in low-level of
abstraction and are important when software engineers need to
design with more detail the adaptive system architecture [6].

Alternative represents a set of available options of adaptivity
that an AS uses for changing the system behavior. For instance,
in a self-healing system a failing service could be replaced by
one that meets the same characteristics in order to complete
successfully the assigned tasks without manual intervention.
The main role of a decision is to choose, among a set of
possible alternatives, the most suitable one according to the
contextual situation [16].

Reference Inputs consists of the concrete and specific set of
values, and corresponding types, that are used to specify the
state to be achieved and maintained in the managed system
by the adaptation mechanism, under changing conditions of
system execution [6]. They could be implemented as single
reference values, some form of contract, service level objec-
tives, among other possibilities.

Measured Outputs consists of the set of values, and cor-
responding types, that are measured in the managed system.
Naturally, as these measurements must be compared to the
Reference Inputs to evaluate whether the desired state has been
achieved, it should be possible to find relationships between
these inputs and outputs [6].

Reference models, like MAPE-K, are built after a long
domain analysis process, combined with knowledge of spe-
cialists in that domain. They prescribe certain abstractions that
are not straightforward to identify. Most of the times, these
abstractions are the fundamental points of maintenance and
evolution steps in the system.

B. Architectural Drifts

Architectural drifts are implementation decisions that differ
from an existing reference model or planned architecture. A
drift occurs when there exist a reference model (or planned
architecture) to be followed, but the current implementa-
tion of the system presents points which are different from
those prescribed in the reference [17]. Architectural drifts
not necessarily will result in dramatic problems; they may
be there consciously. However, it is advisable to be aware
of them, since evolution and maintenance activities can be
compromised [12].
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Some authors link architectural drifts with architectural
smells. According to Zimmerman [18], an architectural smell
could be defined as the observation or the suspect that some-
thing in architecture design and its implementation is no longer
adequate under the actual requirements and current constraints
for the system; these requirements and constraints may differ
from the originally specified ones.

In fact, some architectural smells can cause architectural
drifts. Examples are Implicit Dependencies and Design Vio-
lations [19]. The first one occurs when the implementation
of a system contains dependencies that are not available
in the architectural models; this may cause many liabilities.
Developers could create a drift between the desired and the
implemented architecture when they add implicit dependencies
in the implementation without informing anyone else about
these new dependencies. The second one occurs when there is
a violation of design policies, such as using relaxed layering
instead of strict layering. This should be avoided because
different engineers in a project might resolve the same kind of
problem with different solutions in an uncontrolled way; this
reduces visibility and expressiveness.

To identify architectural drifts, software engineers use ar-
chitectural conformance checking approaches. There are two
main techniques for this: Reflexion Models, and Domain-
specific Languages [20]. The Reflexion Models technique
compares a high-level model manually created by the architect
with a concrete model, extracted automatically from the source
code [21]. On the other hand, the Domain-specific Languages
technique focuses on architecture conformance provided by
software architects to express in a customized syntax the
constraints defined by the planned architecture [22].

While it is possible to specify the architecture of a system
using a generic vocabulary, it is better to adopt a more
specialized one when targeting architectures of a particular
application domain [23]. Indeed, architectural patterns guide
and focus software architects on the quality attributes of
interest in large part by restricting the vocabulary of design
alternatives to a relatively small number [2]. Therefore, as
architectural drifts affect quality attributes and differ from the
architecture originally specified, we argue that architectural
drifts of a specific domain should mention concrete terms to
help software engineers in the activities that involve the iden-
tification and refactoring of them because generic descriptions
are vague and do not help software engineers in their tasks.

III. ARCHITECTURAL DRIFTS OF ASS

This section highlights the main results of our efforts on
characterizing architectural drifts. Firstly, we provide a brief
overview of the methodology we have followed and it consists
in five steps. Secondly, we present the characterization of three
architectural drifts we were able to find in the ASs.

In order to characterize them, we adopted a uniform tem-
plate based on the work of Suryanarayana et al. [24].

A. Methodology
The methodology we have followed for characterizing the

drifts is described in the following five steps.

1. Collecting Adaptive Systems: The goal of this step was
to collect and create a database of ASs for further analysis.
Therefore, we set up a software repository with representative
ASs. We searched in open repositories such as GitHub and
GitLab, research papers that mentioned the location of ASs
repositories and gray literature. Most of the collected ASs
came from SEAMS conference which is one of the major
events in the self-adaptive systems area. We did a fork of all
ASs to the research group repository. We filtered the repository
according to two rules: clear documentation and all system
resources should be available for execution. As a result, the
systems shown in Table I were chosen for analysis.
2. Analysis of Literature: The goal of this step was to analyze
research literature from a non-systematic review. Besides the
main abstractions and their relationships, we also focused on
identifying low-level abstractions and their relationships. Thus,
we analyzed publications related to reference models of ASs.
Particularly, we focused on studies that dealt with the MAPE-
K reference model [4] [25] [6]. These studies made a deep
analysis of the MAPE-K, identifying and describing other
abstractions which enrich the MAPE-K reference model. This
happens because MAPE-K delivers just the most canonical
and higher level abstractions of ASs, hiding lower-level ab-
stractions.

The most relevant studies we have identified were the ones
by Villegas et al. [6], Weyns et al. [11], and IBM [3]. The
first one provides the definitions of several abstractions found
in ASs. The second one provides a reference model which
covers a wide spectrum of MAPE-K perspectives. The third
one is the architectural blueprint for autonomic computing.
The abstractions are Reference Outputs, Reference Input and
Alternatives.
3. Enriching MAPE-K with lower level abstractions: The
goal of this step was to complement the MAPE-K reference
model with lower level abstractions. After having identified the
canonical and also some lower level abstractions of MAPE-K,
we elaborated the reference model shown in Figure 2.

It is clear that the MAPE-K reference model is based on
the design principle of separation of concerns. However, it
just takes into account high-level abstractions and their rela-
tionships, leaving to software engineers the implementation
of lower-level abstractions which could be implemented in a
wrong way, without architectural quality. As a consequence,
architectural drifts will affect the evolution of the AS, and
hence hardening maintenance tasks.

Figure 2 presents the reference model mapped on the
systems that we analyzed. Note that the reference model adds
three new abstractions: Alternative, Measured Outputs and
Reference Input to the schematic view of MAPE-K.

The CL abstraction contains the four MAPE-K abstractions
as usually represented in the literature. The Planner abstraction
is not mandatory (multiplicity 0) because several ASs do not
require it to perform simple adaptations. Monitor, Analyzer,
Planner and Executor abstractions can access the Knowledge
abstraction to get some information for using it in their
reasoning. Moreover, the Planner accesses the Alternative
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TABLE I
EXAMPLES OF ADAPTIVE SYSTEMS CONTAINING THE PROPOSED DRIFTS

SYSTEM DESCRIPTION DRIFT LOCATION SOURCE LOC

Zanshin-
ATM

A system that provides basic banking services, along
with managerial services, such as having a bank operator
turn the ATM on/off.

SRI
Class: CashDispenser

Attribute: cashOnHand
Model: model.atm

https://github.com/
Advanse-Lab/Zanshin

14.341

ASHYI-
EDU

A system that provides virtual learning environment
(VLE) with dynamic adaptive planning.

SRI
Class: BeanASHYI

Method: isCambioContexto
Variable: datos.getContexto()

https://github.com/
Advanse-Lab/ASHYI

371.091

mRubis-
self-
healing*

A system that simulates a marketplace on which users
sell or auction items.

SRI, OA R.I. are declared in the CompArch model
(ComponentState metaclass) - Alterna-
tives are implemented in the Plan class

https://github.com/
Advanse-Lab/mRUBiS

131.052

TAS* A system that provides health support to chronic condi-
tion sufferers.

OA Class:TASStart
Method: initilize() https://github.com/

Advanse-Lab/TAS
147.072

PhoneAdapter A mobile system that performs behavioral adaptations
according to contextual data and rules.

MEE Class: MyBroadcastReceiver
Method: onReceive https://github.com/

Advanse-Lab/
phoneadapter

11.638

AdaSim* An open-source simulator for the automated traffic
routing problem which allows for fast development of
solutions to the problem.

MEE Class: Vehicle
Method: setStrategy https://github.com/

Advanse-Lab/adasim
11.111

SAVE* A system that simulates the recording and manipulation
of a video, using an mp4 stream and processing each
of the original frames to obtain a compressed version of
the stream.

MEE Class: Encode
Method: main https://github.com/

Advanse-Lab/save
670

* Systems taken from the International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

Control
Loop
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Fig. 2. MAPE-K with lower-level abstractions

abstraction in order to select the best option that fits with the
adaptation goal. Analyzers should reason about whether or
not there are symptoms of adaptation by taking into account
Measured Outputs and Reference Inputs.

Executors must perform the realization of the action plan
given by the Planner or Analyzer abstractions through one
or more rules by means of the corresponding Effector [7].

This abstraction could also have some kind of intelligence.
For instance, it could decide the priority of adaptive rules that
will be executed on the managed subsystem and a scheduling
schema when there is time constraints [26].

Effectors provide the necessary interfaces to modify the
resources or artifacts of the managed system. According to
the autonomic blueprint, an effector consists of one or both
of the following: A collection of “set” operations that allow
the state of the manageable resource to be changed in some
way, and a collection of operations that are implemented by
autonomic managers that allow the manageable resource to
make requests from its manager [3].

If we look at the managed subsystem as a dependency graph,
effectors should only have outgoing dependencies to internal
components. That means that the efferent coupling is low, so it
is easy to maintain them. On the other hand, if we look at the
managing subsystem as a dependency graph, executors should
only have incoming dependencies so they should be more
stable because changing them could affect several planners
or analyzers. The relation between executors and effectors
must be surjective, that is, every executor corresponds to one
effector.

We argue that two of the five abstractions (Alternatives and
Reference Inputs) are less recognized in literature and, as a
consequence, developers do not pay enough attention to them.
It is important to make them visible because there is a great
possibility that they receive maintenance tasks. For instance,
a self-healing system could need to add new alternatives to
manage uncertainties that software architects were not aware

392

Authorized licensed use limited to: University of Exeter. Downloaded on May 05,2020 at 22:53:49 UTC from IEEE Xplore.  Restrictions apply. 



in the original design. In the same way, changing or adding
new Reference Inputs could be another recurring tasks when
threshold values need to be adjusted in order to get a suitable
adaptation.
4. Analysis of Systems: The goal of this step was to analyze
the systems in two ways: a static analysis with automated
tools and a manual analysis for searching the abstractions of
the reference model of Figure 2 and mapping them in the ASs.
The result of this step was a set of Architectural Drifts.
5. Simulating Maintenance Tasks: The goal of this step was
to create several maintenance tasks for analyzing the impact
of quality attributes when they are applied in the systems.
We raised a list of maintenance tasks for each system such as
adding, modifying and removing abstractions that are involved
in the architectural drifts. As a result, we characterize the most
relevant Architectural Drifts and present them in Subsection
III-B. Table II presents the template used in this work to
document the drifts.

TABLE II
ARCHITECTURAL DRIFT TEMPLATE

Template
Element Description

Name &
description

An intuitive name and a concise description of
the architectural drift.

Rationale Reason/justification of why this is an anomaly in
the context of Adaptive Systems.

Potential causes List of typical reasons for the occurrence of the
anomaly.

Impacted quality
attributes

Quality attributes impacted negatively, such as
modularity, reusability, analysability,
modifiability and testability.

Affected
architectural
abstractions

Architectural abstractions of an adaptive system
affected by the architectural anomaly.

Practical
considerations

Sometimes, drifts are introduced intentionally
either due to constraints (such as language or
platform limitations) or to address a larger
problem in the overall design.

Identification of
the anomaly How to identify the drift.

Instance of Whether the anomaly is an instance of a generic
one.

B. Three Common Architectural Drifts of ASs

In this section we present the three architectural drifts we
have identified and characterized. It is important to emphasize
that the focus of these drifts is on maintainability, i.e., the
presence of them suggests the conduction of maintenance tasks
can be painful. For this, we based our analysis on ISO 25010
standard (https://tinyurl.com/y6e6wru2); modularity, reusabil-
ity, analyzatility, modifiability and testability.

1) Scattered Reference Inputs (SRI): Description: This
drift arises when Reference Inputs are not localized/stored in
the Knowledge.
Rationale: The lack of a well-modularized module to store
Reference Inputs, or their declarations scattered through sev-
eral modules, makes Analyzers to access different modules,
other than relying on a unique and consistent point (i.e. the
Knowledge). Besides, the Reference Inputs end up declared in

modules that already have other responsibilities. To be more
precise, there are four problems:

• Increase on the efferent coupling of Analyzers: Analyzers
need to have access to several modules that are not
specific of storing the Reference Inputs, increasing the
coupling of them with other modules;

• Violation of the Encapsulation Principle: When Reference
Inputs are defined into other modules that are responsible
for other abstractions, the abstractions are tangled, mak-
ing these other modules too exposed because they have
to be accessed by the Analyzers;

• Decrease of the cohesion of other abstractions: As the
other abstractions become tangled with Reference Inputs,
their level of cohesion decreases because of afferent
coupling, which turns them abstractions with high degree
of responsibility;

• Compromising of the reusability: The reusability is also
severely impacted. This happens because the reuse of
Reference Inputs as a module in other contexts requires
the modification of all modules where they are located.

Potential Causes:

• Inadequate architecture analysis: Software architects did
not consider the definition of a well defined module to
store the reference inputs at the beginning of the archi-
tecture design due to tight deadlines, resource constraints
or minor performance gains.

• Lack of refactoring: At the beginning of a project, few
Reference Inputs were declared, but as software evolves,
the number of Reference Inputs could increase so it may
be needed to refactor them into a new abstraction. The
lack of refactoring may lead to a Scattered Reference
Input drift.

Impacted Quality Attributes: Typical maintenance activities
are: (i) adding Reference Inputs when an AS needs to achieve
new adaptation goal; and (ii) removing Reference Inputs when
some adaptation goals are not desirable anymore. Therefore,
the following attributes may be impacted:

• Modularity: The modularity of this abstraction is com-
promised because its implementation is spread through
other modules such as monitors, analyzers, planners and
executors, increasing the likelihood of introducing side
effects during maintenance tasks.

• Reusability: The reusability of this abstraction is compro-
mised since it is difficult to reuse the Reference Inputs in
other contexts, considering that they are not encapsulated
in a unique module with a well defined interface.

• Analyzability: The analyzability of this abstraction is
affected due to the nature of the drift, more points of
failures could be generated by adding or removing Refer-
ence Inputs and, as a consequence, the the understanding
decreases.

• Modifiability: The modifiabilty of the Managing Sub-
system is impacted because changes will take longer,
since the time to find the Reference Inputs is higher.
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Maintenance also becomes risky because it could affect
other modules.

• Testability: The testability of this abstraction is impacted
because it will be necessary to create different and totally
independent test cases, since the Reference Inputs are
spread thought other modules. If Reference Inputs were
declared in a dedicated module, the test cases will be
simpler.

Affected Architectural Abstractions: As the Reference In-
puts are scattered, the Analyzer could depend on several
modules in order to query them for making an adaptation
decision.
Practical Considerations: When there are few reference
values to be queried by the analyzer, it may be convenient
to store the values in the Analyzer but, in a certain extent, if
more values are queried, it is desirable to create an abstraction
to store all of them.
Identification of the drift: Once the analyzer is identified,
software engineers have to check the rules that triggers an
adaptation. These rules are comparisons composed by Ref-
erence Inputs and measured outputs. The engineer should
analyze if the declaration of all Reference Inputs are stored in
a single abstraction, or if they are scattered in several modules.
Instance of: Broken Modularization: When data/methods that
should have been localized into a single abstraction are sepa-
rated and spread across multiple abstractions [27].

2) Obscure Alternatives (OA): Description: This drift
arises when the set of alternatives of an AS is not implemented
as a first class entity.
Rationale: When the Alternative abstraction is not evident in
the design of the architecture of the managing subsystem, it
means that it was implemented tangled with other abstraction.
Consequently, it makes difficult to understand the mechanism
of adaptation which may imply raise of maintenance costs. In
the MAPE-K reference model, the Analyzer accesses Alter-
native abstraction for using an adaptation option to reach and
maintain a quality level of response of the system according
to the environment state. Thus, it is likely that Alternative and
Analyzer were implemented as a unique abstraction without
an evident difference between them. To be more precise, there
are two problems:

• Increasing the size of Analyzers: The main rule of mod-
ularization is to decompose abstractions to manageable
size. When this rule is violated, it becomes difficult to
understand and maintain these modules.

• Increasing the coupling between abstractions: Changing
to another approach of adaptation could be cumbersome
and risky because that could imply major changes in the
logic of the Analyzer in order to support new approaches.

Potential Causes:
• Centralized control: A centralized implementation could

be better managed; however, the abstraction will become
responsible for a large amount of work and, as a conse-
quence, it could have several points of failures.

• Grouping all functionality together: Often, inexperienced
developers tend to group together and provide all related
functionality in a single module, without understanding
how the Single Responsibility Principle (SRP) should be
properly applied.

Impacted Quality Attributes: Typical maintenance activities
are: (ii) adding a new alternative when an AS needs to achieve
new adaptation goal; and (ii) modifying an alternative when
the purpose of an adaptation needs to change. Therefore, the
following attributes may be impacted:

• Modularity: The modularity of this abstraction could
break because as alternatives are obscure in the soft-
ware architecture, adding a new alternative may confuse
software maintainers, who would implement it in other
abstraction.

• Analyzability: The analyzability of this abstraction is
affected because it has noise that makes hard to discern
on each alternative, as well as on their purpose regarding
the possible adaptations. For instance, when software
maintainers need to modify an adaptation alternative, the
understanding degree becomes low.

• Modifiability: The modifiability of this abstraction is
affected because as the alternatives of adaptation are
overlapped, a modification on one alternative may affect
others.

Affected Architectural Abstractions: Regarding the Ana-
lyzer, strong coupling with Alternative abstraction could limit
its capacity of evolving when maintenance or evolution tasks
must be performed. Regarding the Alternatives abstraction,
adding or removing new alternatives for adapting the managed
subsystem could be error-prone tasks since their implementa-
tion penetrates the several parts of the analyzer.
Practical Considerations: As we stated before, a central-
ized control could facilitate the management of the analyzer.
However, as long as it grows, there is a trade-off between
modularity and size.
Identification of the drift: Software engineers need to iden-
tify the Analyzer and the Alternative abstractions. If just the
Analyzer abstraction is identified in the current architecture of
an AS, then it is likely that the set of alternatives has strongly
coupling with the Analyzer.
Instance of: Insufficient Modularization: This drift arises
when an abstraction exists that has not been completely
decomposed, and a further decomposition could reduce its
size, implementation complexity, or both [27].

3) Mixed Executors and Effectors (MEE): Description:
This drift occurs when Executors and Effectors are not evident
in the architecture of the AS.
Rationale: Executors and Effectors are two abstractions in-
trinsically connected because the first ones perform structural
or behavioral changes on the managed subsystem by means
of the second ones. According to MAPE-K, Effectors are
implemented in the managed subsystem as touch points for
Executors, and the latter are implemented in the managing
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subsystem. However, it is very common to find the implemen-
tation of these abstractions in ASs in a mixed way, without a
clear distinction between them [28], thus making difficult the
comprehension of the adaptation mechanism. In such cases,
it is not clear which parts conform the managed and the
managing subsystems. As a result, this could lead to error-
prone maintenance activities [29].
Potential Causes:

• Lack of implementation guidelines for the MAPE-K
reference model: Despite the fact that MAPE-K shows a
scheme of how the main abstractions must communicate
among them, it does not provide implementation guide-
lines; so, very often software engineers end up developing
Executors and Effectors in an obscure way, mixing them.

• Lack of knowledge of structural and behavioral properties
of each abstraction: Although the main abstractions are
well depicted by the MAPE-K reference model, it is
possible that software engineers misunderstand the real
purpose of each abstraction.

Impacted Quality Attributes: Typical Maintenance Activities
are: adding or removing executors or effectors. Therefore, the
following attributes may be impacted:

• Modularity: These abstractions are affected because as
the AS evolves, the separation of architectural abstrac-
tions are getting unclear because the code of Executors
becomes tangled with the code of Effectors.

• Reusability: These abstractions are affected because it is
not possible to identify the abstractions involved in the
drift unequivocally.

• Modifiability: These abstractions are affected because as
the functions are overlapped, a single change may affect
executors and effectors.

• Testability: These abstractions are affected because the
Managed Subsystem cannot be isolated from the Manag-
ing Subsystem due to the coupling between them. Hence,
testing activities becomes challenging.

Affected Architectural Abstractions: Executors and Effec-
tors, because they cannot be differentiated from each other.
Practical Considerations: If an application contains a large
number of decision points encoded in different autonomic
elements scattered through the application code, externalizing
the self-managing logic away from application objects will
relief the burden for future maintainers. There should be no
practical considerations for the implementation of this drift.
Identification of the drift: Software engineers must iden-
tify the touch points responsible for changing the managing
subsystem in order to understand the logical separation of the
two subsystems. Once these touch points have been identified,
they need to check the degree of coupling of the involved
abstractions.
Instance of: The Grand Old Duke of York: This drift occurs
when developers could not identify the significance of good
abstractions and ignore them even after being suggested by
some team members [27].

IV. EXAMPLES

This section presents some Adaptive Systems that contain
the drifts we have characterized. Table I lists seven systems
and the drifts they contain. The first column shows the name
of the system, the second shows a brief description, the third
shows the drifts that were identified, the fourth shows the
source code artifacts where the drifts are located, the fifth
shows the repository and the sixth shows the lines of code.

We can see that three of the ASs present the Scattered
Reference Input Declarations drift (ASHYI, Zanshin, TAS),
three of them present the the Mixed Executors and Effectors
(PhoneAdapter, AdaSim, SAVE) and two of them present the
Obscure Alternatives drift (TAS, mRubis).

With the analysis of the source code of these systems, it
is clear that developers do not follow naming conventions
given by the MAPE-K reference model, so it is not trivial to
understand which part of the system conforms with monitors,
analyzers, planners and executors. Moreover, in many cases
the adaptation mechanism is tangled with the system logic, so
it becomes difficult isolate each MAPE-K abstraction.

To present a more detailed example, we have selected
two representative systems: Zanshin-ATM and PhoneAdapter.
Zanshin-ATM suffers with the presence of the SRI drift,
and the PhoneAdapter suffers with the presence of the MEE
drift. Subsection IV-A addresses the Zanshin-ATM system, and
Subsection IV-C addresses the PhoneAdapter system.

A. Scattered Reference Inputs Example
To exemplify the SRI drift, we use the Zanshin-ATM

system. Zanshin [30] is a framework for developing adaptive
software and the ATM system uses the Zanshin framework
to make itself adaptive. The main goal of ATM is to provide
basic banking and managerial services.

Two adaptations scenarios are implemented in this system:
1. Recovering from the malfunction of the ATM printer:

In this first scenario, after ATM terminal performing a
transaction, it must print a receipt for the customer. If
the printer fails, the adaptation strategy is to retry twice
the printing operation. If it still fails, then it abort the
printing operation.

2. Managing the shortage of cash: In this second scenario,
the ATM terminal always must check if it has enough
banknotes when a withdraw operation is performed by
customers. In case the banknotes available are not enough
to serve the customer’s request, this task fails and the
whole operation is canceled. Therefore, the adaptive
system contains preventive actions such as augmenting
the number of operators to refill the ATM with cash if
dispensers become empty.

In the shortage of cash scenario, the Reference Input of
interest is the “total amount of cash available on the ATM
dispenser”. The measured value corresponds to the amount of
money that the customer needs to withdraw from the ATM.
Therefore, an adaptation is triggered when the measured value
is greater than the Reference Input. Listing 1 presents a snippet
of the CashDispenser class, where this rule is implemented.
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1 public class CashDispenser {
2
3 private Money cashOnHand;
4 ...
5 public void setInitialCash(Money

initialCash) {
6 cashOnHand = initialCash;
7 }
8
9 public boolean checkCashOnHand(Money

amount) {
10 return amount.lessEqual(cashOnHand);
11 }
12 ...
13 }

Listing 1. Snipper of CashDispenser class [30]

The CashDispenser class implements four methods (two
of them are shown in Listing 1: setInitialCash and check-
CashOnHand). The first one (line 5) sets the amount of
cash initially on hand, and the second one (line 9) checks if
there is enough cash on hand to satisfy a customer’s request.
The cahshOnHand class attribute (line 3) corresponds to the
Reference Input, and the variable amount of type Money (line
9) corresponds to Measured Output. The business rule in line
10 returns true if the dispenser has an amount of cash greater
or equal than the customer needs in a withdraw operation.
Otherwise, it returns false.

In the Printer Malfunction scenario, the Reference Input of
interest is a fixed number of retries. In this case, it was declared
in a goal model that includes several adaptation requirements
(AR), each of them being composed by the adaptation strategy,
the applicability condition, and the resolution condition.

Listing 2 presents a snippet of the goal model in an XMI
file. Line 4 specifies the strategy for this scenario, which is
retrying the operation every 5 seconds, and the condition is to
retry at most twice, as defined in line 8.

1 ..
2 <children xsi:type="atm:AR3" ... >
3 <condition xsi:type="..

SimpleResolutionCondition"/>
4 <strategies
5 xsi:type="..RetryStrategy"
6 time="5000">
7 <condition
8 xsi:type="..

MaxExecutionsPerSession
ApplicabilityCondition"
maxExecutions="2"/>

9 </strategies>
10 </children>
11 ..

Listing 2. Snippet of goal model for ATM system [30]

As we can see, these two Reference Inputs were declared
in two different places of the system. This makes difficult to
understand the mechanism of adaptation, and hence makes
harder the maintenance activities involving these Reference

Inputs. Adding new Reference Input could be confusing and,
in this case, it could affect business rules of the ATM system
or other abstractions of the MAPE-K.

A solution to this drift is the implementation of a class that
declares all Reference Inputs with their getters and setters.
Thus, analyzers can have access to Reference Inputs, and
executors could update the values and adjust them whenever it
is necessary. This solution is in conformance with the reference
model of Figure 2, where Reference Inputs abstractions is
clearly identifiable.

B. Obscure Alternatives

To exemplify Obscure Alternatives drift, we use the Tele-
Assistance System (TAS) system [9]. TAS provides health
support to chronic condition sufferers within the comfort of
their homes. TAS uses a combination of sensors embedded
in a wearable device and remote services from healthcare,
pharmacy and emergency service providers.

TAS takes periodical measurements of the vital parameters
of a patient and employs medical service for their analysis.
The analysis results may trigger the invocation of a pharmacy
service to deliver new medication to the patient, or to change
the dose of medication, or the invocation of an alarm ser-
vice leading, e.g. to an ambulance being dispatched to the
patient [9]. This system is considered an AS with self-healing
property. That means it has the capability of discovering,
diagnosing, and reacting to disruptions. It can also anticipate
potential problems, and accordingly take proper actions to
prevent a failure [15].

TAS implements its self-healing property by means of n-
versions of its active medical services, so if one active service
fail, then it can be replaced by a similar one. Figure 3
presents the TASStart class, which implements the initialize-
TAS() method. This method defines all services that will be
available in the system. Once the system starts, all the defined
services are loaded in a service cache class named SDClass.

Figure 3 also shows two more classes: MainGui and Ap-
plicationController. The first one starts the application and
the second one initializes graphical aspects of the system
and service quality profiles (performance, costs, preferable
service). TASStart also executes the system workflow, which
runs several cycles according to a modifiable parameter.

Notice that services and its alternatives become obscure
because: (i) the name of TASStart class does not reflect its
purpose, nor does the method name initializeTAS(); (ii) ser-
vices and their alternatives should be declared isolated from
other concerns and in a recognizable class for facilitating
maintenance. In this case, the TASStart class also implements
the execution of the workflow.

C. Mixed Executors and Effectors Example

To exemplify the Mixed Executors and Effectors drift,
we use PhoneAdapter [31]. This application uses contextual
information to adapt a phone’s configuration profile. These
profiles are settings that determine a phone’s behavior, such
as display intensity, ring tone volume and vibration.
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Fig. 3. Class TASStart

Instead of users selecting a profile manually, the application
is driven by a set of adaptation rules and each one of them
specifies a predicate whose satisfaction automatically triggers
the activation of an associated profile. The selected profile
prevails until a more suitable one is chosen through the
triggering of other rules. Basically, the system is divided in
two modules: The ContextManager class, and the Adaptation-
Manager class. The former implements several sensors and
monitors to capture context data that is broadcast by means of
Android intent objects to all components of the application.
The latter filters messages with the new context data to check
whether or not the rules are satisfied, and performs changes
in the mobile behavior. Listing 3 presents a snippet of the
AdaptationManager class.

1 public class MyBroadcastReceiver {
2 public void onReceive(Context c, Intent

i) {
3 if(volume>0){
4 mAudioManager.setRingerMode(

AudioManager.
RINGER_MODE_NORMAL);

5 mAudioManager.setStreamVolume(
AudioManager.STREAM_RING,
volume, AudioManager.
FLAG_SHOW_UI);

6 }
7 if(vibration==1){
8 mAudioManager.setVibrateSetting(

AudioManager.
VIBRATE_TYPE_RINGER,
AudioManager.
VIBRATE_SETTING_ON);

9 }
10 }
11 }

Listing 3. Snippet of AdaptationManager class

Lines 5 and 9 show two adaptation rules. The first one
modifies the volume of the ringtone, and the second one
activates the vibration mode.

The AdaptationManager class has more than 1000 lines of
code, so it is not a trivial task to understand which part of
the code corresponds to executors and effectors. Moreover, as
there is not a clear distinction between these two abstractions,
the Android API code becomes tangled with the custom
adaptation rules, and hence difficult to be maintained in case
developers need to add or remove new touch points.

Figure 4 presents a possible design for separating effectors
and executors by using interfaces. In this case one executor
could affect one or more effectors and one effector corresponds
to one executor. It is a modular solution that separates these
two abstractions in order to identifies them clearly.

Executor

«interface»
IExecutor

Effector

«interface»
IEffector

1

1..*

Fig. 4. Separation of executors and effectors

V. RELATED WORK

To the best of our knowledge, there are no studies in
the literature focusing architectural drifts in the context of
Adaptive System development. Some studies [32], [33], [34]
address architectural smells that occur in embedded systems,
one study [23] addresses this type of smell in web applications
based on MVC (Model-View-Controller), and [35] addresses
in the context of software based on Product Lines.

Eliasson et al. [32] performed a secondary study and an
exploratory study, obtaining a meta-analysis on the following
subjects: Technical Architectural Debt and a characterization
of an architectural smell. More specifically, the authors empha-
sized that there is usually no automatic transformation between
architectural models and detailed design. Thus, inconsistencies
between architecture models and detailed design may result
in architectural technical debt. In the context of embedded
systems for cars, the authors characterized the “Misplaced”
architectural smell. This smell occurs when there is no speci-
fication detailing that a component should be deployed taking
into account its communication with other components.

DeAndrade et al. [35] characterized architectural smells
in the context of Product Lines through an exploratory
study. The authors discussed two ways to identify smells
(Resource Model and Variability Management). From this
perspective, the authors described five types of architectural
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smells (namely, Connector Envy; Dispersed Parasite Func-
tionality; Ambiguous interfaces; Connector Adjacent External;
and Appeal Concentration). By applying an exploratory study,
the authors identified that two architectural smells (Envious
Connector, and Ambiguous Interfaces) are introduced during
the software development of Product Lines.

Vogelsang et al. [33] performed a study in the context of
automotive software. They identified that components with
implicit dependencies generate a high future cost in terms
of maintenance. In the paper, the authors characterize the
“Communal implicit components”. These communal implicit
components should be analyzed and refactored, due to the
increasing maintenance effort to keep them. The authors
proposed an automatic component refactoring approach in
order to develop a dedicated component layer.

Elizondo et al. [23] characterized six architectural smells
that occur in web applications based on the MVC (Model-
View-Controller) architectural style. The authors proposed
these architectural smells, highlighting when and where they
occur. In general, these smells are based on communication
between artifacts, i.e. Models and Views; Controllers and
Models; Controllers and Views. For instance, when there is
the necessity to use data in views, usually, developers use data
that violate the architectural style.

Regarding Antonino et al.’s work [34], although the authors
did not propose new architectural smells, they discussed
profiles of software architects in the context of embedded
systems - and how such profiles contribute to the occurrence of
smells. In this context, the authors only described, for example,
the architectural smell Extraneous Connector that consists
of two components being deployed in the same container.
During the description, the authors discussed how this smell
occurs and a possible solution (i.e. the creation of a dedicated
communication layer).

Comparing our work with other initiatives, we addressed
the context of development of adaptive systems. Other studies
we described in this section are in other contexts. More specif-
ically, Antonino et al. [34] highlighted an architectural smell
that is in the context of our “Scattered Reference Declarations”
drift. Vogelang et. al [33] proposed the definition of communal
implicit components that is in the same context of the implicit
dependencies that we addressed in the “Mixed Executors and
Effectors” drift. DeAndrade et al. [35] discussed a problem
in the context of the “Obscured Alternatives” architectural
drift that we characterized; differently, however, the authors
addressed software based on product lines.

VI. DISCUSSION AND CONCLUSIONS

To the best of our knowledge, this is the first effort in char-
acterizing architectural drifts specific of ASs. Our intention is
that our catalog helps in disseminating good design practices
regarding ASs. After having analyzed several representative
ASs, we have noticed that most of them suffer from bad design
practices that can impact maintainability.

As a result, we characterized three drifts. Scattered Refer-
ence Input expresses the lack of modularization of Reference

Inputs because they are not declared in a Knowledge abstrac-
tion. Obscured Alternatives state that the set of alternatives
of an AS is not implemented as a first class entities. The
Mixed Executors and Effectors indicates that the touch point
where the managing subsystem performs adaptation of the
managed subsystem does not clearly identify the Executors
and Effectors.

Another important aspect is that most of the research
initiatives that deal with architectural drifts are domain-
independent, i.e., they are applicable to several domains given
that they use a specific vocabulary [36], [37], [22]. Neverthe-
less, while it is possible to specify the architecture of a system
using a generic vocabulary, it is better to adopt a more spe-
cialized vocabulary when targeting architectures of a particular
application domain. Indeed, nowadays researchers are focusing
on characterizing drifts that are domain-dependent because it
would aid more accurately software engineers when they need
to identify drifts of a particular domain.

Also, we see that reference models that are too abstract do
not take into account details that might be necessary in the
system implementation due to their lack of information. As
a consequence, developers could introduce architectural drifts
in their designs. Given this scenario, we have augmented the
traditional MAPE-K reference model in order to expose some
lower-level abstractions.

Although MAPE-K is not mandatory for designing the AS
architecture, this work serves as an indicator to software
architects whether or not the system follows the MAPE-K
model. Of course, the final decision is up to architects who
will know the details, contexts and specifics of the system.

Characterizing architectural drifts is a subjective and dif-
ficult process for two main reasons. First, there is no stan-
dard methodology for finding architectural drifts in practice.
Second, it is not straightforward to find a large set of ASs
in existing repositories. Although we found systems being
characterized as adaptive, most of them were developed for
academic purposes. It would be desirable to collect more
systems from industry for investigating whether there exist
other type of drifts, as well as if there exist drifts that
corroborate our catalog of drifts.

By making these drifts evident, we expect software archi-
tects can improve the design and implementation of ASs by
taking into account these issues when creating new approaches
and frameworks, in order to improve architecture quality
attributes. Also, We are currently working on a tool that
map AS abstractions in the source code, specifies a planned
architecture in the ASs context, and performs an architecture
conformance checking (ACC) to identify the drifts.
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