The Journal of Systems & Software 183 (2022) 111116

The Journal of Systems & Software

Contents lists available at ScienceDirect

SOFTWARE

»

journal homepage: www.elsevier.com/locate/jss

Architectural conformance checking for KDM-represented systems™ n

André de S. Landi?, Daniel San Martin ™4, Bruno M. Santos ** Warteruzannan S. Cunha?®,

Check for
Updates

Rafael S. Durelli ¢, Valter V. Camargo"”

2 Amdocs digital network transformation communications, Séo Carlos, SP, Brazil

b Computing Department, Federal University of Sdo Carlos - UFSCar, Sdo Carlos, SP, Brazil
¢ Computing Department, Federal University of Lavras - UFLA, Lavras, MG, Brazil

d Exact Sciences Department, Universidad de los Lagos - ULagos, Osorno, Chile

ARTICLE INFO

Article history:

Received 8 April 2019

Received in revised form 8 July 2021
Accepted 4 October 2021

Available online 12 October 2021

Keywords:

Architecture-Driven Modernization
Knowledge Discovery Metamodel
Architecture-description language
Architectural-conformance checking
Current Architecture

Planned Architecture

ABSTRACT

Architecture-Driven Modernization (ADM) is a model-driven reengineering where systems are repre-
sented as instances of Knowledge Discovery Metamodel (KDM). KDM is the standard for representing
systems in ADM context due to its power for capturing an extensive set of information about
software systems. Besides, it is language and platform-independent, so every technique that is able of
processing it also present this advantage. A recurrent activity in modernization projects is checking
the conformance between the Current Architecture (CA) against the Planned Architecture (PA) in order
to identify architectural drifts. The canonical phases of this activity are: (i) specification of the PA
with its communication constraints; (ii) ex-traction of the CA, including the relationships among the
architectural abstractions; and (iii) comparison between both architectures to identify the drifts. To
the best of our knowledge, there is no ACC approach that addresses ACC in ADM context, considering
KDM-represented systems. Therefore, we presents an ACC approach to be used in ADM context. We
show how KDM can be used in ACC processes for representing the system to be modernized, the
PA and the CA. We evaluated Arch-KDM using a small (LabSys-7KLoc) and a medium-size system
(FreeMind-84KLoc) and the accuracy of the identification was acceptable.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Architectural erosion is a well known and recurrent problem
that affects the architecture of legacy systems. It is a gradual
degradation of the architecture that leads to many problems,
such as decreasing the reuse levels, breaking of the modularity,
rising of the maintenance costs and generation of many undesired
side effects along with the evolution of the system (de Silva and
Balasubramaniam, 2012).

A technique that can be used to detect indications of archi-
tectural erosion is the Architecture-Conformance Checking (ACC),
whose goal is to find the architectural drifts of the Current Ar-
chitecture when compared to the architecture the system should
have, i.e,, its Planned Architecture (Knodel and Popescu, 2007; de
Silva and Balasubramaniam, 2012; Terra and Valente, 2009). As
soon as the drifts are detected, software architects can take more

™ Editor: W.K. Chan.
* Corresponding author.
E-mail addresses: andrelan@amdocs.com (A.d.S. Landi),
daniel.santibanez@ufscar.br (D.S. Martin), bruno.marinho@ufscar.br
(B.M. Santos), warteruzannan@estudante.ufscar.br (W.S. Cunha),
rafael.durelli@ufla.br (R.S. Durelli), valtervcamargo@ufscar.br (V.V. Camargo).

https://doi.org/10.1016/j.jss.2021.111116
0164-1212/© 2021 Elsevier Inc. All rights reserved.

precise decisions about how to adjust the Current Architecture’
towards the Planned one.

In order to conduct ACC processes, there are three moments/
phases: the first one is the specification of the Planned Architec-
ture, in that a representation of the intended architecture must
be created; the second one is the recovering of the Current Ar-
chitecture, in that a representation of the current implementation
must be generated; and the third one is the comparison between
both architecture representations in order to identify the drifts.
A Planned Architecture is not a simple architectural specification
since it must specify not only the required architectural abstrac-
tions (Layers, Components, etc.) the system must have but also
the access/communication rules that must be guaranteed among
these elements.

Architecture-Driven Modernization (ADM) was proposed for
Object Management Group (OMG), and it is a way of conducting
software reengineering employing models along the process. The
central idea of ADM is to define and deliver standard metamodels
to increase the success in modernization projects. Knowledge Dis-
covery Metamodel (KDM) is the main metamodel of ADM as its

T In this paper the authors assume that a Current Architecture as the same
as the Implemented Architecture once the currently implemented code of the
system will have its current architecture.

https://doi.org/10.1016/j.jss.2021.111116
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111116&domain=pdf
mailto:andrelan@amdocs.com
mailto:daniel.santibanez@ufscar.br
mailto:bruno.marinho@ufscar.br
mailto:warteruzannan@estudante.ufscar.br
mailto:rafael.durelli@ufla.br
mailto:valtervcamargo@ufscar.br
https://doi.org/10.1016/j.jss.2021.111116

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

goal is to represent the system to be modernized. KDM is nowa-
days the de-facto standard for representing systems in the context
of software modernization. What makes KDM distinguishable is
that it is (i) an ISO (International Standard Organization) standard
(ISO/IEC 19506); (ii) it is able of representing the complete spec-
trum of a software system, ranging from low-level details (such
as source code and its actions) to higher-level abstractions, like
architectural ones and business rules (Pérez-Castillo et al., 2011)
and (iii) because it is language and platform-independent, what
makes every algorithm or technique that manipulate it have this
same advantage.

As a consequence of its broadness for representing the aspects
of a software system, KDM is organized in packages that repre-
sent different abstractions of the system. Each package is also a
metamodel responsible for representing one specific part of the
system. The Structure package, for example, is the most crucial
package in the context of this work. It contains metaclasses for
representing the logical architecture of software systems (layers,
components, and modules), the existing relationships between
these architectural elements/abstractions, and also the imple-
mentation relationships between the architectural abstractions
and the concrete source code elements (OMG, 2016).

Although there are several ACC approaches in the literature
(Avgeriou and Guelfi, 2005; Ivkovic and Kontogiannis, 2006; Han-
nemann et al., 2005; Herold and Mair, 2014; Terra et al., 2012;
Schroder and Riebisch, 2017; Koschke, 2018; Bandara and Perera,
2019), none of them investigates how to conduct ACC in ADM-
based projects. What differentiates these approaches from ours
is mainly the use of proprietary metamodels for representing
the systems, which hinders the reusability of the algorithms that
handle these metamodels. Up to this moment, there are little
shreds of evidence of the applicability of KDM as a standard
representation of systems in ACC processes.

This paper presents Arch-KDM, a tool-supported approach
for supporting the conduction of ACC in ADM context. To do
that, Arch-KDM uses KDM for representing the Current Archi-
tecture of the system to be modernized as for representing the
Planned Architecture of the system. The Arch-KDM process in-
volves four phases: In the first one, the Software Architect uses
a DSL (Domain-Specific Language) called DCL-KDM for specify-
ing the Planned Architecture (Landi et al., 2017). This Planned
Architecture is then serialized as a KDM instance retaining all
the architectural abstractions (Layers, Subsystems, etc.) and the
allowed and prohibited access rules among them. In the second
phase, the Software Architect uses a Wizard for recovering the
Current Architecture of the legacy system that is also serialized as
a KDM instance. In this phase, all the relationships between archi-
tectural abstractions and concrete source code elements are also
recovered, providing a complete mapping between the abstrac-
tions and concrete elements. In the third phase, a comparison
engine compares the Current Architecture with the Planned Ar-
chitecture to search for differences, and in the last phase, the
differences are presented as architectural drifts.

We have carried an evaluation focused on evaluating the Arch-
KDM as a whole, analyzing the precision and recall of the drifts
identification. The goal was to evaluate the precision, recall, and
f-measure of the tool support provided by our approach.

The main contributions of this paper are: (i) Presenting an
approach to conduct ACC for systems represented as KDM in-
stances, therefore our approach acts over an ISO pattern and it
is language-independent; (ii) Presenting evidences that KDM is a
metamodel that can be used in ACC processes and (iii) KDM can
be used for representing not only the system to be modernized
but also the Planned Architecture. Such contributions make our
approach platform and language independent, i.e., it can be used
for checking the conformance of systems implemented in any
language.

The Journal of Systems & Software 183 (2022) 111116

This paper is structured as follows: Section 2 introduces the
concepts that are necessary to the foundation of this paper. Sec-
tion 3 shows the Arch-KDM formalization, including an example
of specification using the DCL-KDM, and the ACC steps supported
by the tool. In Section 4 is presented the evaluation, the results,
and the threats to validity. In Section 5 the related works and in
Section 6 the conclusion are presented.

2. Background
2.1. Architectural-conformance checking

Architectural Conformance Checking (ACC) is one of the main
activities in software quality control. ACC goals is to reveal the
differences between the Planned Architecture and its real imple-
mentation (Knodel and Popescu, 2007). It reveals the relations
and constraints foreseen by the PA that were violated by the
system'’s implementation.

As a result of the ACC, it is possible to get three kinds of
information. The first one is the relationships that were specified
as “allowed” in the Planned Architecture that are implemented
in the current system. These relationships are called “conver-
gences”, and they show that the implementation is compatible
with the Planned Architecture. The second one is the relation-
ships that were specified as “not allowed” in the Planned Ar-
chitecture, but they are present in the current system. These
relationships are called “divergence” or “architectural drifts”, and
they reveal that the implementation is not compatible with the
Planned Architecture. The third one is the relationships that were
not specified in the Planned Architecture, but they are present
in the current system. These relationships are called “absences”,
and they show that the relations in the implementation were not
found in the Planned Architecture.

There are two ways of conducting ACC processes (Knodel
and Popescu, 2007; Murphy et al,, 2001). The first one is the
static verification in which the source code is compared with the
Planned Architecture. The second one is the dynamic verification
in which characteristics of the running system is compared with
the Planned Architecture. Based on these two ways of conducting
ACC process, the two main static techniques for performing ACC
are Reflection Models and Compliance Relations Rules (Knodel
and Popescu, 2007; Murphy et al., 2001). Reflection models is a
technique that supports the use of a high-level system model as
an eyeglass to see the source code model. Usually, this technique
is applied when there is a few or none information about the
system and its architecture (Murphy et al., 2001). The Compli-
ance Relations Rules specify constraints between the architectural
elements. These constraints can allow, prohibit, or impose the
relations between the elements (Knodel and Popescu, 2007).

In our approach, we considered these two techniques. We
used the Reflection Models to compare the architectural defini-
tions and also applied the Compliance Relations Rules to verify
if the architectural definitions are being respected. In our case,
each relationship rule usually is composed of one relationship
kind, a compliance rule kind, a source element, and a target
element. In these rules, the source and target elements are de-
fined by a regular expression that represents their names. The
kind of compliance rule determines if the relationship between
the components is allowed, prohibited, not defined, or imposed.
Finally, the relationship kind defines which dependency kind
exists between the elements, like a method call or an attribute
declaration.

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

{Conceptua|]{ Build][]TStructure] ﬁg%rractions

{Data]{ Event]{ uI /]U Platform] fg;’éirme Resource
\

J]{ i] Program Elements
Micro { Code Actions Layer

KDM [Core]{ Kdm]{ Source] Ingrgrstructure

Fig. 1. The four KDM layers and packages from Pérez-Castillo et al. (2011).

2.2. Architecture-driven modernization and knowledge discovery
metamodel

ADM is an OMG initiative to promote industry consensus on
the modernization of the existing software system. It combines
reengineering concepts, Model-Driven Architecture (MDA) prin-
ciples and standard metamodels. ADM introduces several mod-
ernization standards like KDM, Abstract Syntax Tree Metamodel
(ASTM) and Structured Metrics Metamodel (SMM) (Pérez-Castillo
et al, 2011; OMG, 2017).

An ADM-based modernization process starts by reverse en-
gineering a system into a KDM instance that, by its turn, is
analyzed/mined to search for problems. Next, a set of refac-
torings and optimizations are performed to obtain a refactored
and improved KDM instance (Durelli et al., 2017, 2014c). The
process is completed with the generation of the modernized
system. According to Perez (Pérez-Castillo et al.,, 2011), ADM can
support many kinds of modernization scenarios such as: platform
migration, language to language conversion, application improve-
ment and architectural revitalization (Pérez-Castillo et al.,, 2011).
KDM is the main metamodel of ADM and able to represent
all the characteristics of software systems in a unique meta-
model (Pérez-Castillo et al., 2011). A schematic representation of
KDM can be seen in Fig. 1. It is divided into four layers that are
further divided into packages. Each package is an internal meta-
model, concentrating on specific aspects of the software. Thus,
there are packages for representing a wide spectrum of systems
abstractions, from low-level details like source-code (Code pack-
age) and run-time actions (Action package) to high-level details
like User Interface (UI package), Business Rules (Conceptual
package) and Architectural View (Structure package) (OMG,
2016, 2017).

It is important to mention that although KDM is divided into
layers, its packages can communicate with each other. These
inter-package communications are a key point in KDM since it
allows mapping higher-level abstractions to lower-level ones.
These communications between the packages are schematically
represented in Fig. 1 by the two arrows from Structure to
Code and Action packages. These three packages are the most
important packages in the context of our research.

Code Package contains all the metaclasses for modeling the
source code static structure. For example, ClassUnit metaclass
represents classes and InterfaceUnit metaclass represents in-
terfaces. The Code package has a total of 90 metaclasses and all
the abstract elements for representing the source code (OMG,
2016). The Action Package defines metaclasses to represent be-
havioral units. Examples of these behaviors are: declarations
(Reads, Creates, etc.), operators (Writes, Addresses, etc.), and
flow conditions (Flow, TrueFlow, etc.). When generating a KDM
instance, it is assumed that each element of the Action package
corresponds to a behavior in a programming language.

The Structure Package is one of the most important ones
as it is able to represent the logical architecture of a software
system. Fig. 2 shows in the left part, the Structure package
metaclasses in gray and other important related metaclasses

The Journal of Systems & Software 183 (2022) 111116

in white. In the right part, there is a schematic representa-
tion of a Structure package instance. Structure package pro-
vides five metaclasses for representing architectural elements:
Subsystem, Component, SoftwareSystem, ArchitectureView
and Layer. Besides, by means of the self-relationship of the
AbstractStructureElement, it is possible to create a hierarchy
among these elements. For instance, it is possible to create an
architecture having a Software System with two subsystems,
which include two layers each, where each layer can include two
components.

This package also provides an important means for speci-
fying mappings between higher-level concepts to lower-level
ones. This can be seen like an abstract-concrete mapping and
this is done by an attribute named “implementation” (OMG,
2016), represented by the relationship between the AbstractSc-
tructureElement and KDMEntity metaclasses. Notice that KDMEn-
tity metaclass belongs to the Core package, which is a central
KDM package that provides base metaclasses for the other pack-
ages. KDMEnt ity is one of the most important metaclasses, since
all the other KDM metaclasses are direct or indirect subclasses of
it. Thus, all KDM metaclasses are KDM Entities.

AggregatedRelationship iS another important metaclass
herein because its role is to capture relationships among architec-
tural abstractions. It is a kind of relationship that can group other
primitive relationships within it. This is being represented in the
Figure by the 0.n association between the
AggregatedRelationship metaclass and the KDMRelationship
metaclass. In KDM, every relationship type is represented by a
metaclass, examples of primitive relationships are method calls
(cal1s metaclass), object instantiation (Creates metaclass) and
implements relationships (Implements metaclass). Each
AggregatedRelationship involves two KDM Entities, the source
(from property) and target (to property), as can be seen in part A
of Fig. 2.

Since all the architectural elements are KDM Entities (due to
the inheritance), it is possible to represent relationships between
these architectural elements employing the
AggregatedRelationship, which is schematically shown in
Fig. 2 Part B. In the example, we have a relationship between
the layers Controller and Model. The cylinder between the two
layers represents an instance of the AggregatedRelationship
metaclass. The controller layer represents the source (from) of the
relationship, and the model layer represents the target (to) of the
relationship. An aggregated relationship incorporates primitive
relationships inside itself. Primitive relationships are “actions” or
structural dependencies that are also represented as KDM meta-
classes. In Fig. 2 Part B, they are represented by the set of arrows
that connects the two layers through the
AggregatedRelationship instance. Every
AggregatedRelationship has a density, which represents the
number of primitive relationships inside it. In this example, the
density is six since it involves six relationship instances (calls,
extends, creates, reads, imports, and hasType).

An important point here is regarding the types of relationships
presented in KDM. Some of them have canonical names that
makes easy to understand what they really are in source code,
such as: calls, extends, imports, etc. However, there are some
other terms that ask for an additional explanation. The terms are:

e HasType. This type of relationship occurs when a source
code element has the type of another source code element;

e UsesType. This type of relationship occurs when there is a
line of code that makes a data conversion.

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

KDMEntity T 0| Aggreg hip (from core) |- relation [KDMRelationship
(from core) - density - int (from core)
- from - density : integer 0.* 0.~
1 B
0.* t N - Cro B ‘
: - TR - Aggregated ' ' | Layer: F— Layer:
. - implementation | controller 1{ % model
: |\ —
[emoovmr 1 0 + Jor o
ClassUnit AbstractStructureElement Calls (from action)

Package (from code)

S

=i

Qub c

Archit View

‘hasType

A y

Layer
B

Fig. 2. A - Structure Package Class Diagram from OMG (2012); B - Schematic example of a Structure Package Instance.

3. Architectural conformance checking with the Arch-KDM
approach

The Arch-KDM approach is divided into four phases, as can
be seen in Fig. 3. The first phase is denominated as “Planned
Architecture Specification”, and to support this step, we provide
a DSL denominated DCL-KDM (Landi et al., 2017; Chagas et al,,
2016) with this DSL, the software engineer can generate a file
with an extension named “.dc1”. This file is serialized by means
of the “Paserializer-KDM” generating the Planned Architecture
in KDM format (A artifact). The second phase is the “Current Ar-
chitecture Extraction”, where the software architect must interact
with a Wizard to recover the current architecture of the system.
This process also uses the A artifact to map the current source
code properly. The output of this step is another KDM instance
containing the current architecture of the system (B artifact).

The next two steps are automatics; the third phase is named
as “Architectures Comparison”, this is the primary step of our
approach. It is in this step that we get the two artifacts generated
in the previous steps (A artifact and B artifact) and performed
an algorithm that accomplishes the ACC and discover, based
on the KDM instances, the system violations. The final phase
is denominated as “Architectural Drifts Visualization”, in this
step the violations (C artifact) are grouped by means of the
“DriftDicovery-KDM” to turn these violations in architectural
drifts. It is important to highlight that our approach is a generic
one, that is, we elaborated and implemented with the conven-
tional steps of any ACC approach (Terra and Valente, 2009; Terra
et al, 2012; Maffort et al., 2016; Knodel and Popescu, 2007;
Murphy et al., 2001). All developed algorithms rely exclusively on
KDM metamodel. Therefore, in theory, our approach can works
efficiently for checking the conformance of any system imple-
mented in an object-oriented language. In the next sections, we
detail each of the four presented phases.

3.1. Planned architecture specification

In this phase, the goal is to create a Planned Architecture
using the principles of ADM. To achieve this goal, it is neces-
sary to create a specification of the architectural elements and
their restrictions. In this way, we created the DCL-KDM, which
is composed of two main parts: (i) A Domain-Specific Language
(DSL) for specifying the Planned Architecture in the ADM context,
and (ii) the PASerializer-KDM (Fig. 3) for serializing the Planned
Architecture as KDM instance.

The DCL-KDM is an extension of the DSL proposed by Terra
and Valente (Terra and Valente, 2009), so to turn the DCL into
DCL-KDM we performed three main extensions - (i) change the
DCL’s grammar to add new keywords for representing KDM's
metaclasses; (ii) automate the generation of constraints; and
(iii) perform the serialization of the Planned Architecture in a

KDM instance. More information regarding the syntax and details
of each extension of the DCL-KDM can be seen in our previ-
ous work named “Supporting the Specification and Serialization
of Planned Architectures in Architecture-Driven Modernization
Context” (Landi et al.,, 2017).

The basis of the specification in DCL-KDM is modularized in
two main blocks, “architeturalElements” and
“restrictions”. Listing 1 depicts an example of DCL-KDM spec-
ification for a Planned Architecture.

The first block (lines 1-12) is where engineers specify the
architectural elements of the Planned Architecture. This specifi-
cation also has their hierarchies and composition relationships
specified with some keywords, like “1evel” and “inLayer”. For
instance, in line 4, there is a declaration of a layer called view,
informing that its level is 3, and it is inside the subsystem core.
It is important to mention that how much bigger the level value,
the layer has a higher level in its hierarchy. The second block
(lines 13-20) is where engineers specify the constraints between
the architectural elements specified. This block must contain the
constraints between the elements. For instance, it is possible to
realize that there are two constraints between controller and
repository (lines 14 and 15). These constraints describe that
the controller can communicate with repository and vice-
versa. It is important to mention that in this case, when we said
that they can communicate, is that they can have the primitive
relationships explained in Section 2.

architecturalElements{
subSystem core;

1

2

3

4 layer view, level 3, inSubSystem: core;

5 layer controller, level 2, inSubSystem: core;
6
7
8

layer model, level 1, inSubSystem: core;

component repository, inLayer: model;

9 component converter;

10 component generic;

11

12 module validator;

13 }restrictions{

14 controller can-depend repository;

15 repository can-depend controller;

16

17 only controller can-depend validator;
18 only controller can-depend converter;
19 only controller can-depend generic;

20 }

Listing 1: An example of Planned Architecture with DCL-KDM

Once the architectural specification was completed, like List-
ing 1, it is possible to serialize the Planned Architecture in terms
of KDM, by the PASerializer-KDM (Fig. 3). This serialization is
guided by the KDM, and it is materialized in an XML file that

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

b3
o

°
-

Planned ©

Architecture

Planned
Architecture

planArch.dcl PASerializer-KDM

Specification

@ Legend
Process
@ Artifact

p Artifact

%

Architectural
Violations

Violation
Discovery-KDM

c
o

1]
=
g
-
E
o
o

Input

@ N

Current @
Architecture %

M 2
KDM Instance ©©

(from MoDisco) > ArchRecoverer-KDM

Current
Architecture

Extraction H

(7))
o

Drifts ©
Visualization 2

Artifact
Output
Automatic
Step

Iterative
Step

Drift Architgctural
Drifts

Architectural

Discovery-KDM

Fig. 3. Arch-KDM approach.

represents the architectural elements and its relationships as an
instance of the KDM (Landi et al., 2017). For the first block, the
serialization is a simple map by each architectural element and
its representation in KDM, but for the second block, the KDM
does not give us a clear support for constraints between the
architectural elements.

Therefore, regarding to the second block, we decided to repre-
sent constraints using the metaclass AggregatedRelationship.
This metaclass is like a container to primitive relationships, as il-
lustrated in Section 2. To use this AggregatedRelationship, We
create an instance for representing the communication between
two architectural elements. Then, the presence of an
AggregatedRelationship indicates that there is communica-
tion between these elements, and the absence indicates that
there is none communication. Also, to take advantage of KDM
we deepen our decision by using the 34 primitive relationships
that KDM provides to us. These relationships work in a similar
way that the Aggregated. The presence/absence of primitive re-
lationship types inside the AggregatedRelationship instance
state that these types of relationships can exist between the
architectural elements.

For instance, the absence of the AggregatedRelationship
between two architectural elements A and B represents that there
are none of the 34 primitive relationships between them. In the
opposite side, the presence of the AggregatedrRelationship be-
tween two architectural element A and B represents that there is
a specific set of primitive relationships between them, so, if there
is only the relationship type “method calls (calls metaclass)”
inside it, then it represents that between A and B only this type
is allowed.

3.2. Current architecture extraction

It is important to state that a PA is not an artifact that does
not need maintenance. Changes in the organization culture, mar-
ket demands and other internal and external factors can trigger
updates in the PA. Therefore, software architects need to be aware
of that and establish a systematic procedure for monitoring and
checking whether the PA keeps meeting the desired goals.

Therefore, the goal here is to obtain a representation of the
Current Architecture of the system so that it can be compared
to the Planned Architecture obtained in the previous phase. Our
strategy is to materialize the Current Architecture as KDM in-
stances so that it can be more easily compared, in an automatic
way, to the Planned Architecture, which is also materialized as a
KDM instance.

In our approach, Current Architecture is an artifact that owns
these four items:

(i) All the concrete source code elements and their rela-
tionships. These source code elements include packages, classes,
methods, attributes, method bodies, parameters, and also rela-
tionships, such as calls, implementations, inheritances, parameter

passing. All source code elements are represented by the Code
and Action Packages of KDM;

(ii) All the architectural abstractions of the system. Architec-
tural abstractions include layers, modules, subsystems, and com-
ponents. The Structure Package of KDM represents architectural
abstractions;

(iii) All the relationships between architectural abstractions.
This kind of relationships says, for example, that Layer A com-
municates with Layer B. This kind of relationship is represented
in KDM through the AggregatedRelationship, and it resembles
UML associations;

(iv) The concrete-abstract mappings. These are the mappings
between the architectural and source-code levels, linking abstrac-
tions to concrete source code elements. This kind of mapping
says, for example, the Layer A is represented in the source code
by the package P. This is represented in KDM by the implements
relationship.

The process of extracting the Current Architecture is per-
formed in two steps: (1) extracting the source-code view of
the system by reverse engineering it using MoDisco (Bruneliere
et al, 2010; Bruneliére et al., 2014) and; (2) reconstructing
the architectural view of the system; which is done semi-
automatically. In the first step MoDisco (Bruneliere et al., 2010;
Bruneliére et al., 2014) generates viewpoints of the system related
to source code and its relationships, that is, the Code and Action
Packages of KDM. As MoDisco is unable to reconstruct the archi-
tectural viewpoint of the system, the second step is responsible
for complementing this lack by generating the KDM Structure
Package.

The second step, which is the reconstruction of architectural
view, is performed in two sub-steps called: Mapping Abstrac-
tions and Reconstructing Relationships between Abstractions.
The first one is manual, and the second is automatic. The first
one must be conducted by a software architect that must map
the architectural abstractions, declared in the Planned Architec-
ture, to the concrete source code elements of the system. To be
able to perform this activity, the architect must know the high-
level architecture of the system, or he must have access to the
architecture documentation if any. For example, to be able to
map Layer A to Package A, (s)he must previously know that this
package is the source code representation of that layer. Therefore,
our approach helps in the identification of the fine-grained drifts,
i.e., mostly internal relationships among packages. If the architect
is not able to create the mappings, the conformance checking
cannot be conducted.

Fig. 4 shows a screenshot of the ArchKDM Wizard, where
software architects can work by mapping the architectural ab-
stractions of the system to its source-code elements. Letter A
points out a window in which appears abstractions that were
declared in the Planned Architecture. It is possible to see the
existence of a subsystem with three internal layers; Layers A, B,
and C. Letter B points out a window where the Code Elements of
the system are shown. Letter C is the windows in which appears

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

ArchKDM Wizard

Please, map the architectural abstractions to the code elements.

Architectural Abstractions
(From Planned Architecture)
~ 4 [Subsystem] SubSystemS
4 [Layer] LayerA
4 [Layer] LayerB

A

Map Abstraction to the Code Element

» £ [Package] PackageA
~ {1 [Package] PackageB

« [Layer] LayerC

» i [Package] PackageC

Code Elements
(From Current Implementation of the System)

B

(® [ClassUnit] ClassD
@ [ClassUnit] ClassE
@ [ClassUnit] ClassB
O [InterfaceUnit] ClassC

[l anauaaelinit] Common lava datatvoes

Remove Mapped Abstraction

[Layer] LayerA was mapped to [Package] PackageA
[Layer] LayerB was mapped to [ClassUnit] ClassB
[Layer] LayerB was mapped to [ClassUnit] ClassD

Mapped Abstractions

[Layer] LayerC was mapped to [Package] PackageC

C

Save Complete Mapping

< Back Next > Cancel Finish

Fig. 4. Mapping abstractions with code elements.

the mappings between architectural abstractions and source code
elements already done by the Software Architect. Formally, let
(X, {ay, ay, ..., ar}) be the relation between elements of the set
of abstractions and the subset of code elements, that means for
each abstraction X there is k > 1 such that X is mapped to
{ai, aa, ..., a}. For instance, Fig. 4 presents 3 mappings:

(LayerA, {PackageA}); (LayerB, {ClassB, ClassD});
and(LayerC, {PackageC})

Our Wizard also allows mapping architectural abstractions not
only to container elements, such as packages but also to classes
and interfaces. Our example shows that Layer A and C are mapped
to packages, which is the most conventional mapping. However,
we also show that Layers can be mapped to classes; this is the
case of Layer B, which is represented in the source code for classes
B and D.

As soon as the Software Architect does the mapping process,
the second automatic sub-step (Reconstructing Relationships be-
tween Abstractions) can be started, which aims at identifying and
reconstructing the relationships among the Architectural Abstrac-
tions. This process involves the execution of three algorithms that
generate the instances of AggregatedRelationship metaclass
and its primitive internal relationships.

This is a bottom-up process because of discovering relation-
ships between architectural abstractions. Firstly it is necessary
to identify relationships between source-code elements. For in-
stance, suppose ClassA owns a Call relationship with ClassB and
they belong to different packages; Package A and Package B. Sup-
pose also Package A is the concrete materialization of the archi-
tectural abstraction LayerA, i.e., Package A was mapped to LayerA
and Package B to LayerB. Therefore, it is clear that there is a rela-
tionship between Package A and Package B. As they are mapped
to Layer A and B, we can say there is also a relationship between
Layer A and Layer B. Since relationships between architectural ab-
stractions are represented with the AggregatedRelationship in
KDM, in this case, we create an instance of a
AggregatedRelationship between Layer A and Layer B (if there
is none) and insert an instance of the Call primitive relationship
inside it. As new primitive relationships are discovered between

Package A and B, they are also inserted into the already existing
AggregatedRelationship that links Layer A and B.

Next, we explain the three algorithms involved on the recon-
struction of the relationships between architectural abstractions.
Algorithm 1 is the main one and uses the other two (Algo-
rithms 2 and 3) shown below. This algorithm initiates creat-
ing a copy of the Current Architecture and the Planned Archi-
tecture into a new and unique KDM instance, by the method
copyInformation (). After that, the “for” loop is responsible for
analyzing the concrete-abstract mappings (provided by the Soft-
ware Architect) and generating relationships of the type
“implements”, which is used in KDM for linking abstractions to
concrete source code elements. The method “getCodeInfo()”
retrieve this information based on the
“concreteAbstractMappings”, “architectureAbstraction”
and “code- Information”, this method is not presented in this
paper. Finishing this first mapping, we initiate the discovery of
the AggregatedRelationship.

Algorithm 2 shows the core of the discovering of
AggregatedRelationship between the architectural abstrac-
tions. This algorithm receives as an input the KDM instance with
the information of the Current Architecture, Planned Architecture,
and the initial mapping between them. The process starts with
the iteration of each architectural abstraction already mapped by
the implementation property of each architectural abstraction.
On each iteration, the algorithm gets the code elements that
represent the architectural abstraction and initiate another itera-
tion. This second iteration gets the code element that represents
the implementation of the architectural element and recover
(method “recoverPrimitiveRelationships”) the existing re-
lationships by each type of the 34 types of KDM relationships.
When it finds the existence of a group of relationships between
code elements that belong to different abstractions, the algorithm
creates or updates (method “createOrUpdateAggregateds”) an
instance of the AggregatedRelationship KDM metaclass to
make explicit the relationship between the architectural abstrac-
tions.

The method “recoverPrimitiveRelationships” (not pre-
sented in this paper) searches the primitive relationships of each
architectural abstraction based on the primitive relationship type

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

Algorithm 1: GENERATING THE CURRENT ARCHITECTURE

Input: codelnformation: KDM instance containing the code of the system; plannedArchitecture: KDM instance containing the
Planned Architecture; concreteAbstractMappings: The concrete-abstract mappings provided by the Software Architect in

the Wizard.

Output: currentArchitecture: KDM instance containing the Current Architecture fully mapped

begin

COPYINFORMATION(currentArchitecture, plannedArchitecture)
for each architecturalAbstraction € plannedArchitecture do

end
DISCOVERAGGREGATEDRELATIONSHIPS(currentArchitecture)
end

o return currentArchitecture

© 0N U R W N =

—

coPYINFORMATION(currentArchitecture, codelnformationKDM)

currentArchitecture.plannedArchitecture.GeT(architecturalAbstraction)
.IMPLEMENTATION(GETCODEINFO(concreteAbstractMappings, architecturalAbstraction, codelnformation)

Algorithm 2: METHOD DISCOVERAGGREGATEDRELATIONSHIPS

Input: currentArchitecture: KDM instance containing the Code Information of the Current Architecture and the Structure

information of the Planned Architecture
Output: Update of the currentArchitecture by reference

1 begin

2 for each architecturalAbstraction € currentArchitecture do

3 for each codeElement € architecturalAbstraction do

4 for each relationshipType € RelationshipTypes do

5 relationshipsOfCodeByArchitecturalAbstraction <
RECOVERPRIMITIVERELATIONSHIPS(relationshipType, codeElement, currentArchitecture)

6 CREATEORUPDATEAGGREGATEDS(architecturalAbstraction,

7 relationshipsOfCodeByArchitecturalAbstraction)

8 end

9 end

10 end

11 end

received by parameter. It uses an SDK named KDM-MANAGER?
responsible for performing searches in KDM instances and re-
trieve information about it. The SDK is used to recover all types
of relationships that are inside the code elements of an instance.
After finding them, the set of relationships are separated by the
target architectural element to simplify future algorithms.

At last, the Algorithm 3 shows the method
“createOrUpdateAggregateds”. This method has the logic of
how an instance of AggregatedRelationship KDM metaclass is
created or updated. In this method it is performed an iteration
on each target architectural element to search for existing aggre-
gated with the “from” architectural element and the “to” archi-
tectural element from all the possible options of the relationships
founded in the method “recoverPrimitiveRelationships”. In
negative case, the aggregated with that “from” and “to” did not
exists, so we create a new one between these elements. Then, the
instance (new or not) is updated adding the relationships founded
and updating the density of the AggregatedRelationship.

This process of using the methods
“recoverPrimitiveRelationships” and
“createOrUpdate Aggregateds” is repeated for each one of the
34 relationships types that KDM provide to us for each archi-
tectural abstraction selected by the software architecture. As the
main result of this phase, we have a KDM instance with the Struc-
ture and Code Packages linked. That fully mapped KDM instance
enables us to perform the conformance checking explained in the
next section.

2 This SDK was created by the primary author to standardized and facilitate
the handling with KDM instances in Java. This SDK can be seen and cloned on
the https://github.com/dedeLandi/kdm-manager repository.

3.3. Architectures comparison - detecting violations

In this phase, the goal is to automatically compare the two
artifacts created (Planned Architecture and Current Architecture)
for identifying the violations between these both architectural
representations. To achieve this goal, we create an algorithm
that analyzes these two KDM specifications and identify the fine-
grained violations.

The Algorithms 4, 5 depicts the developed algorithm that uses
the Planned Architecture to check the relationships of the Current
Architecture to evaluate if the relationship can exist or if the re-
lationship is a violation. This algorithm contains two main parts.
The first one is an iteration between the relationship allowed by
the Planned Architecture as in the relationships that exist in the
Current Architecture, and the second one is the processing of the
instance to verify if it is a violation.

The Algorithm 4 represents the core of the ACC algorithm. This
algorithm initiates recovering the instances of
AggregatedRelationship in both inputs. Then, it is performed
an iteration in each one of the planned
AggregatedRelationship instances. Therefore, some data of
the instance of the iteration is recovered, and it is searched
in the Current Architecture the instance that is parallel to it.
Completing this processing, we had an instance of the Planned
Architecture and a set of instances of the Current Architec-
ture. Then initiate another iteration in the set of the current
AggregatedRelationship instances to validate if the relation-
ships inside it are violations through the method

removePrimitiveRelationship.

https://github.com/dedeLandi/kdm-manager

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

Algorithm 3: METHOD CREATEORUPDATEAGGREGATEDS

Input: relationshipsOfCodeByArchitecturalAbstraction: Relationships to analyse; architecturalAbstraction: The architectural

abstraction to analysed
begin

1
2
3
4
5 end
6
7
8
9

.UPDATEDENSITY()
10 end
11 end

for each architecturalAbstractionTo € relationshipsOfCodeByArchitecturalAbstraction.allArchitecturalAbstractions do
if architecturalAbstractionTo ¢ architecturalAbstraction.allAggregatedRelationships.to then
\ architecturalAbstraction.CREATEAGGREGATEDRELATIONSHIPWITHTO(architecturalAbstractionTo)

architecturalAbstraction.GETAGGREGATEDRELATIONSHIPWITHTO(architecturalAbstractionTo).ADD(
relationshipsOfCodeByArchitecturalAbstraction.GETRELATIONSHIPS())
architecturalAbstraction. GETAGGREGATEDRELATIONSHIPWITHTO(architecturalAbstractionTo)

Algorithm 4: APPLYING THE ARCHITECTURAL CONFORMANCE CHECKING

Input: plannedArchitecture: KDM Instance of the Planned Architecture; currentArchitecture: KDM Instance of the Current

Architecture

Output: currentArchitecture: KDM Instance of the Current Architecture with a new model composed of violations

begin

1
2

3

4 for each allowedAggregated € possibleAggregateds do
5 from <« allowedAggregated.GETFROM

6 to < allowedAggregated.GETTO

7

8

9

for each currentAggregated € currentAggregateds do

possibleAggregateds < GETAGGREGATEDSFROM(plannedArchitecture)
actualAggregateds <— GETAGGREGATEDSFROM(currentArchitecture)

allowedRelationships < allowedAggregated.GETRELATIONSHIPS
currentAggregateds <— RECOVERSAMEAGGREGATED(to, from, actualAggregateds)

10 \ REMOVEPRIMITIVERELATIONSHIP(allowedRelationships, currentAggregated)
1 end

12 end

13 end

14 return currentArchitecture

Algorithm 5: METHOD REMOVEPRIMITIVERELATIONSHIP

Input: allowedRelationships: Relationships allowed by
Planned Architecture; currentAggregated:
AggregatedRelationship instance of the Current
Architecture to analyse

1 begin

2 for each relationshipToRemove € allowedRelationships do

3 for each currentRelationship €
currentAggregated . GETRELATIONSHIPS do

4 if relationshipToRemove.class =

currentRelationship.class then

5 currentAggregated . REMOVE(currentRelationship)

6 currentAggregated .UPDATEDENSITY()

7 end

8 end

9 end

10 end

The Algorithm 5 represents the method
removePrimitiveRelationship. This method is responsible for
removing the relationships that are not violations. The method
receives as inputs a set of relationships allowed by the Planned
Architecture and an AggregatedRelationship instance of the
Current Architecture. Then it is performed an iteration in each
relationship allowed. In each iteration is performed another iter-
ation in the relationships inside the

AggregatedRelationship instance. So, it is validated if the re-
lationship inside the AggregatedRelationship has the same
type of relationship allowed. In the positive case, the relationship
inside the AggregatedRelationship is removed from it. In the
negative case, the relationship is not removed. In this way, af-
ter finished the algorithm, the relationship presented inside all
AggregatedRelationship instances of the Current Architecture
are violations.

3.4. Architectural drifts visualization

This phase’s goal is presenting to the software architect all
violations found by the tool in terms of architectural drifts. The
result of the third phase is a KDM instance containing the vio-
lations, each of these represents a small part of the architectural
problem, so it is needed to perform the process of identification
of similarity to obtain the final architectural drift.

This is an important phase of our approach, because although
the violations are grouped into relationship metaclass instances
(AggregatedRelationship), the violations themselves are not
following any specific grouping criteria, that is, in the way they
are presented, they cannot be seen as architectural drifts but only
as a set of punctual problems shown in a very fine-grained way.

To turn these fine-grained violations into architectural drifts,
so that they can be easily observed in the source code, it was
necessary to elaborate grouping algorithm of the correlated vio-
lations. We provided two grouping alternatives to the software
architect so that he(she) can choose the one that best fits his
needs. The first one is based on the Proximity Matrix and the

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

Table 1 Table 2
Definition of terms used to calculate the evaluation metrics. Metrics used in our evaluation.
Term Description Description Metric
Ground Truth (GT) Architectural drifts identified manually by a Precision give us the ratio between truly Precision(P) = GTTF,,
domain expert. Also known as Oracle identified architectural drifts over the
True Positive (TP) Architectural drifts identified by Arch-KDM total quantity of relevant architectural
and by GT drifts (a sum of ground truth and false
- - - - - positives)
False Negative (FN) Architectural drifts that were not identified by - - ™
Arch-KDM but were identified by GT Recall give us the ratio between truly Recall = 7

False Positive (FP) Architectural drifts identified by Arch-KDM but

were not identified by GT

second one based on XML hierarchy search. Fig. 5 shows these
two examples. On the left side of this figure, there is a screenshot
of our eclipse plugin representing the first approach, and on the
right side, there is a screenshot of a UML diagram representing
the second approach.

The first approach is based on a combination between the
Proximity Matrix algorithm and clustering by the DBSCAN algo-
rithm. To implement this approach, it was used the resources
provided by the tool named Weka (Bouckaert et al., 2010; Garner,
1995; Borah and Bhattacharyya, 2004; Ester et al., 1996). The ma-
trix is based on the hierarchy path of the architectural elements
source and target. As can be seen on the left side of Fig. 5, each
item named “Drift X” represents an architectural drift founded
by the combination of these two algorithms. In this example, the
algorithm generated six architectural drifts from a total of 10
violations found at the architectures comparison stage.

The second approach is named DriV-UML. It shows architec-
tural drifts graphically using UML diagrams (classes and pack-
ages). Here, drifts are grouped by an algorithm based on the XML
hierarchy of the elements in the KDM instance. It is also impor-
tant to mention that in this context, the UML diagrams are used
in a way they were not meant to be used. In this case, instead
of showing the system as a whole, the diagrams illustrate only
the architectural drifts. This strategy’s main point is: each visible
UML relationship represents at least one architectural drift. Also,
the UML elements (classes and packages) represent the classes
and architectural elements related to the drift.

4. Evaluation

In this section, we present the evaluation of our approach
involving two systems of different sizes: LabSys (7.539 LoC) and
FreeMind (87.000 LoC). As the goal in this paper is to present an
ACC approach for KDM-represented systems, it is expected that
it has a high accuracy when identifying architectural violations
regardless of the fact of the system be represented as a KDM
instance.

Three main factors influence the accuracy of this process:
(i) the correct specification of the planned architecture; (ii) the
correct mapping and extraction of the Current Architecture and
(iii) the correct implementation of the algorithm that performs
the checking. The evaluation we have conducted and showed in
this section concentrates just on the checking process, focusing
on showing the accuracy of the process of identifying the existing
drifts. An evaluation of our DSL can be found elsewhere (Landi
et al, 2017).

Our evaluation is based on the metrics precision, recall and
f-measure (Makhoul et al., 1999; Landgrebe et al., 2006; Ron-
cero, 2010; Pérez-Castillo et al., 2011). Table 1 shows four terms
used to formalize these three metrics and Table 2 shows a brief
description of each metric used in our evaluation.

identified architectural drifts over the
total quantity of successfully
architectural drifts retrieved (a sum of
ground truth and false negatives)

2.PR

F-Measure is the harmonic average of =

the precision and recall where an
F-Measure score reaches its best value
at 1 (perfect precision and recall) and

f — measure(F) =

worst at 0

Table 3

LabSys size metrics.
Source element count LoC Components Packages
4.378 7.539 137 13

4.1. Evaluation 1: Evaluating Arch-KDM with LabSys

In this first part of the evaluation we have used a small
system called LabSys (Laboratory System) with 7.359 LoC. It was
developed in the Federal University of Tocantins (UFT), Brazil. The
main purpose of this system is to manage the laboratories of the
whole university.

The evaluation presented here was structured according to
Wohlin guidelines (Wohlin et al., 2000). The following items
summarize the evaluation:

o (I) Research Question: Does Arch-KDM reach good levels of
precision, recall and f-measure when identifying architec-
tural drifts?

o (II) object of study: The Algorithms of Arch-KDM that per-
form the checking process;

e (II) goal/purpose: Checking the precision, recall and f-
measure of Arch-KDM in the checking process, i.e., its per-
formance for identifying drifts;

e (IV) perspective: software architects trying to find out ar-
chitectural violations in systems;

e (V) quality focus: The accuracy of the Arch-KDM approach;

e (VI) context: academic context.

4.1.1. Methodology of LabSys evaluation

The methodology of this evaluation involves three steps. The
first one was the manual identification of the architectural drifts
of the system under analysis for creating an oracle. The second
one was to apply Arch-KDM on the system to get the architectural
drifts and the third one was to analyze the results.

LabSys was developed considering different architecture styles
but without an explicit documented architecture. There were just
a few pieces of documentation. Therefore, with the aid of the
developers and analyzing the source code, it was possible to make
its Planned Architecture explicit. Table 3 presents some LabSys
metrics about its complexity. The first column shows the total
number of statements added to the total number of programming
elements defined in the system. The second column shows the
lines of code, which indicates that the system has a medium size.
The third column shows the number of classes in the system, and
the last column shows the number of packages.

Step 1: Creating the oracle for the architectural drifts of
LabSys

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

—

=] ArchKDM

Wizard

ArchKDM Wizard

Identified Drifts

Drifts

Proximity Matrix
© [Drift 1]
4 ©[Drift 2]
Q [Calls] anonymous
Q [Creates] anonymous
Q [HasType] anonymous
© [Drift 3]

Configure ML Algo
Evaluate Drifts

Details

Package: br.ufscar _Sinp

] <Subsystem>core

import Ent

[<Layer>model

Ea model

) ype
(CourseType aType);

CourseType getType
([parameters]);

g\# Course

l—‘-;q’. period : CoursePeriod [0..1]

ityConverter;

[return type] setPeriod
(CoursePeriod aPeriod);

LF‘@ type : CourseType [0..1]

iod getPeriod
([parameters]);

© [Drift 4]
@ [Drift 5]
© [Drift 6]

Class: VisualizarPessoas
Method:
Actions:

Possible LoC:

preencherDados

[cauts]

4]
A_type_course

4]
A_period_course

=

=

] Entityconverter

converter

type[0..1] period[0..1]

Y
| [CourseType | | 3, CoursePeriod ‘

@

< Back

(a) Drifts based on proximity matrix

(b) Drifts based on XML hierarchy

Fig. 5. Example of our two approaches to visualize the architectural drifts.

The main goal of this step was to manually analyze the entire
source code of the system in order to find architectural drifts. This
analysis was executed by following three activities and checking
twice each class of the system. The activities are: (i) Analyze each
line of a class; (ii) if the line references to an object or item that
not belongs to the own class, then we verify the called element
and store the caller and called elements; (iii) check if the stored
pair is permitted in the planned architecture. If not, we annotate
it as an architectural drift. In order to perform the first activity,
we created a planned architecture for LabSys, as we show in Fig. 6.
The planned architecture is conformed by the Subsystem core
which in turn has three Layers (view, controller and model) and
a Component (util).

Layer model is composed by the Component repository and
Component util is composed by three Layers (validator, converter
and generic). The arrows represent the allowed access of an archi-
tectural element to one or more architectural elements. The an-
notation (hierarchical access) states that an architectural element
belongs to an specific level of abstraction.

Table 4 presents the matrix with the number of architectural
drifts that were identified manually (the oracle) from architec-
tural elements of planned architecture. The values obtained to
elaborate the table were removed from the manual identification
of architectural drifts, as we explained before.

Notice that only were found drifts from model layer to util
component and converter layer, from validator layer to util com-
ponent and from generic layer to util component. In Table 5 we
depict three lines of the oracle. The complete oracle can be access
in the following link “https://goo.gl/75mssX".

Summing up, our oracle found 119 architectural drifts. The
greatest amount occurs from the validator layer to util component
with 52 drifts while the least amount occurs from generic layer
to util component.

Step 2 - Running the Architectural Checking Process on
LabSys

In this step, we applied Arch-KDM to LabSys in order to get
the architectural drifts identified by our approach. After that,
we compared the results of this step with the previous one to
recognize the lines of source code defined as architectural drifts.
The result of this step was the association of each architectural
drift to one term of Table 1.

As our approach is for KDM-represented systems, we needed
to generate a KDM instance that represents LabSys. To do that,

10

we had to create the specification of the PA for LabSys using
our DCL-KDM. Listing 2 shows the PA of our experiment and it
reflects the diagram of Fig. 6. Line 2 specifies the core subsystem.
Lines 4 — 6 specify three layers (view, controller and model)
in hierarchical access inside of core subSystem. Line 7 specifies
repository component inside of model layer. Line 9 specifies util
component inside of core subSystem. Lines 10 — 12 specify three
layers (validator, converter and generic) in the same hierarchical
level inside of util component. From line 16 to 34 the PA specifies
the accesses.

architecturalElements{
subSystem core;
layer view, level 3, inSubSystem:
layer controller, level 2, inSubSystem:
layer model, level 1, inSubSystem:
component repository, inLayer: model;

1
2
3
4 core;
5 core;
6 core;

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

component util, inSubSystem:
level 1, inComponent: util;
level 1, inComponent: util;
util;

core;
layer validator,
layer converter,
layer generic, level 1, inComponent:

}restrictions{

controller can-depend repository;
controller can-depend model;

only controller
only
only
only

can-depend
can-depend
can-depend
can—-depend

util;
validator;
converter;

controller
controller
controller generic;
only
only

util can-depend model;
util can-depend repository;

only
only

validator can-depend
validator can-depend

model;

repository;
only model;
only

converter can-depend
converter can-depend repository;
only generic can-depend model;
only generic can-depend repository;

}

Listing 2: Specification of the Planned Architecture of LabSys

Step 3: Validation of results

https://goo.gl/75mssX

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

System: LabSys LEwEr

view

T —
i
\Ir (hierarchical access)
controller >
I
i
v (hierarchical access)
model
e |
repository
-
I S m—

Component

Allowed access —»|

SubSystem: core

util

validator

converter

generic

Fig. 6. Planned Architecture of LabSys.

Table 4
Results of the manual identification of architectural drifts from LabSys.
View Controller Repository Model util Validator Converter Generic
000 000 000 000 1 0 1000 0 00 000 Calls
000 000 000 000 0O O 0O0O0OO 0 00 000 Uses type
000 00O 0 00 000 O 16 0000 0 00 000 Creates
Model Validator Generic ¢ © 0 0 00 000 000 O O 0O0O0O 0 00 0 00 Extends
000 000 0 00 000 O 8 0O0O0TO 12 0 0 000 Implements
000 00O 0 00 000 O O 0O0O0TO 0 00 0 00 Has value
000 00O 000 000 10 1 100 0 12 0 0 0 00 Imports
000 000 0 00 000 309 0000 0 00 000 Has type
Total 000 00O 000 0 00 4 5 2000 24 0 0 0 00 119
Table 5 Brazil; (iv) a software developer with a Ph.D. in computer science
Oracle example of LabSys. with experience in software modernization.
Source element Line Target element Line Type In the second activity, we delivered the Consent Form Free and
Block. java 3 EntityConverter.java NJ/A Import a class Informed to the judges for acceptance purposes and to declare
Campus.java 20 EntityConverter.java N/A Implement a class the role of each participant. In the third activity, we delivered
Course.java 98 CoursePeriod. java N/A Method return

In this step, we applied the Jury Method (da Fonseca et al.,
2007; Matos, 2014) to evaluate the interpretation of the domain
expert when performed the oracle and the comparisons of archi-
tectural drifts that were manually generated in the previous step.
This method consists of the use of a jury composed of judges that
individually analyze the results proposed by the domain expert.
After the analysis of the judges, it was verified if they agreed.
It was done by using the Percentage of Absolute Agreement
(PAA) (Matos, 2014). This calculation is performed by dividing
the number of times that judges agree over the total quantity
of evaluated items by them. For some authors, the minimum
acceptable value is 75%, and a value of 90% is considered high.
In order to perform the Jury Method, we follow 4 activities.

In the first activity, we chose 4 volunteers to compose the jury
table. Three volunteers performed evaluations and one volunteer
acted as solve problem man in case of disagree among the other
judges. All four volunteers were domain experts in computing
and software development. Their names are not disclosed by
privacy issues but their profiles comprises: (i) a software de-
veloper with an MSc in software engineering with experience
in databases and working in a worldwide aviation enterprise;
(ii) a software developer with an MSc in computer science with
experience in software modernization; (iii) a privacy expert and
professor from Pontifical Catholic University of Minas Gerais,

11

the necessary documentation to the judges for their participation,
such as the analyzed source code, the oracle developed by the
domain expert and the results obtained by Arch-KDM. In the
fourth activity, we requested the jury to do an analysis of the
source code of the system and to compare it with the planned
architecture. Thus, they were able to classify the architectural
drifts found by the domain expert and Arch-KDM. After their
evaluation, the domain expert had the task of evaluation of three
items in two categories, “Agree” if he approves the evaluation
performed by the jury and “Not agree” if he does not approve
the evaluation performed by the jury. The defined items are: (i)
architectural drifts manually found; (ii) identification of which
architectural drift that was manually found represents the ar-
chitectural drift automatically found and; the evaluation as a
whole.

Step 4: Results of ACC using LabSys

Table 6 represents a matrix contains the result of the third step
of the LabSys evaluation. Each cell shows the amount of deviation
- automatically detected - between an architectural element
and a specific type of drift. ArchKdM was able to detect 100
architectural drifts, but after analyzing the data, the real value
was 94 drifts. This happened because our clustering algorithm
clustered six drifts that were already identified in two groups due
to the proximity coefficient value set up. Nevertheless, as it was
the only divergence, we opted to maintain the value.

In Table 7, the result of the fourth step of the evaluation can
be observed. In Table 7, it is possible to observe that the jurors
numbered from 1 to 3 agreed and validated the execution of the

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

Table 6
Automatic identification of the results of architectural deviations from LabSys.
View Controller Repository Model util Validator Converter Generic
000 00O 000 000 1 0 1000 0 00 000 Calls
000 00O 000 000 O O O0O0OTO 0 00 000 Uses type
000 00O 000 000 O 16 0000 0 00 000 Creates
Model Validator Generic © © 0 0 0 0 000 000 O O O0O0OTO 0 00 000 Extends
000 00O 000 000 O O O0O0OTO 12 0 0 000 Implements
000 00O 0 00 000 O O O0O0OTO 0 00 000 Has value
000 00O 000 000 10 1 1000 12 0 0 000 Imports
000 00O 000 000 306 0000 0 00 000 Has type
Total 000 00O 000 000 41 33 2000 24 0 0 000 100 (94)
Table 7 Table 11
Judges score by evaluation question. Freemind size metrics.
Rated item Judge 1 Judge 2 Judge 3 Source element count LoC Components Packages
Manual identification Agree Agree Agree 37.356 84.357 438 45
Architectural drifts: Manual x Auto. Agree Agree Agree
Evaluation Agree Agree Agree
Table 8 the better the performance of the object under analysis (Roncero,
able
Values of the evaluation metrics. 2010).
Term Value Analyzing the obtained metrics were possible to affirm that
the approach and the computational support developed have
Ground Truth (GT) 119 . .Pp . . p pp. . p
True Positive (TP) 04 positive and very promising results. Analyzing in-depth the ar-
False Negative (FN) 25 chitectural deviations not found by the computational support, it
False Positive (FP) 0 was possible to observe that the algorithm contains some faults
regarding code elements represented in the KDM Code package.
Table 9 In the specific case of this evaluation, it was observed that the
Values of the metrics. deviations not found automatically were because they are ele-
Values ments of the composition of the TemplateUnit metaclass. It is be-
Precision (P) = 0,7899 lieved that. by evol\{mg the algorithm for the other unrecognized
Recall (R - Recall) = 0,6527 elements, it is possible to reach an accuracy of 100%.
f-measure (F) = 0,7147 Another interesting point to be mentioned in that we made
contact with the original developers of LabSys showing the results
Table 10 we have reached. They considered very relevant to know about
Precision level scale for information retrieval. the existence Of those dI‘lftS, but they cannot guarantee that the
Precision Level maintenance problems they are suffering is consequence of these
Precision < 0.47 Very low drifts. Hence, they recognize the drifts found are clear problems
0.47 < Precision < 0.56 low that must be solved, even though most of them being related to
0.56 < Precision < 0.63 Average the util package.
0.63 < Precision < 0.72 High
0.72 < Precision Very High

evaluation. In this way, it was possible to carry out the last step
of the evaluation.

As mentioned before, we used the metrics precision, recall and
F-measure. In Table 8 can be observed the values for each of the
four terms necessary for the calculation of the metrics. Therefore,
substituting the values of Table 8 in the metrics of Table 2 we
obtain our final results. Considering the architectural deviations
recovered (TP), the value of the precision is 0,7899 representing
a precision of 78,99%. Using the values stipulated and proposed
by Perez-Castillo et al. (2011) (Table 10), it can be affirmed that
the technique and the computational support developed can be
used with a certain degree of confidence since it reached the very
high precision level according to the authors (see Table 9).

The recall calculation is the ratio of deviations found on all
deviations and false negatives. As noted, the recall value is 0.6527
representing 65.27%. This means that of all architectural de-
viations, 65.27% were recovered. Finally, we have the metric
f-measure used to evaluate the accuracy by performing a weight-
ing between the values of precision and recall. The result value
is 0.7147 representing 71.47%. This metric is an indication of per-
formance so that the closer to the total is the result, that is, 100%,

12

4.2. Evaluation 2: Evaluating ArchKDM with FreeMind

This evaluation was conducted with a medium-size system
called FreeMind (84 KLoc). It is a system written in Java used
to create mind-mapping and it was used by Pruijt et al. (2017)
for comparing ten (10) different ACC approaches. Just like (Pruijt
et al, 2017), we used the version 0.9.0 of FreeMind for our
evaluation, that is available here.? Table 11 shows some metrics
of FreeMind.

As mentioned, Pruijt et al. (2017), performed a comparison
among ten (10) different ACC approaches using the FreeMind
system. However, unlikely the LabSys evaluation, in this case both
the Planned Architecture and the Oracle (containing the existing
drifts that violate the rules prescribed in the PA) were available.
Therefore, we decided to apply Arch-KDM in this system and
compare the results with the oracle presented by the authors.
Obviously, although the PA was available in the paper, it was not
specified using our DSL. Thus we have to build the specification
for enabling to use ArchKDM.

The evaluation presented here was also structured according
to Wohlin guidelines (Wohlin et al., 2000). The following items
summarize the evaluation:

3 http://freemind.sourceforge.net/wiki/index.php/Download.

http://freemind.sourceforge.net/wiki/index.php/Download

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

]] plugins accessories Layer
script help svg plugins Component

- » <<StandardPropertyHandler>> B .
v attributes
-3 <<MindMap>> ‘ NodeAttributeTableModel
) ModeController

o ControllerAdapter
iy MindMapNode

Y
OptionalDontSHowMeAgrainDialog

f >{ Controller

MindMapController
MindMapHookerAdapter

commom

freemind

modes Ll

BooleanHolder

il

Tools

FreeMindSecurityManager (-

FreeMindMain

hooks

HookAdapter extensions

Fig. 7. Structure of Freemind with dependency relations.

o (I) object of study: The Algorithms of Arch-KDM that per-
form the checking process;

e (II) goal/purpose: To assess the performance of the Arch-
KDM to identify other types of architectural drifts that were
not found on the LabSys;

o (III) perspective: Of academics and practitioners that uses
the KDM in the context of modernization systems;

e (IV) quality focus: The focus is on precision, recall, and
f-measure;

o (V) context: Academic context.

4.2.1. Methodology of FreeMind evaluation

The methodology used in this evaluation had three steps. The
first one was specifying the Planned Architecture presented by
Pruijt et al. (2017) using our DSL. The second was to apply the
Arch-KDM on the FreeMind system to find the architectural drifts.
The third one was to analyze the results. The next subsections
detail the methodology steps.

Step 1 - Specifying the planned architecture. Pruijt et al.
(2017) present the following rule as the Planned Architecture
of FreeMind: the class plugins.script.ScriptingEngine is not al-
lowed to use any from package freemind. In other words, any
dependence from class ScriptingEngine to any element within
package FreeMind is considered a drift.

Fig. 7 shows the current architecture of FreeMind with some
dependencies — not all are shown for not polluting the diagram.
Each dependency line represents one or more concrete depen-
dencies. For example, although there is just one dependency line
between the classes ScriptingEngine and MindMapController, there
may be two or more method calls between these classes. Some
classes and packages was also omitted to better visualization.
Therefore, we concentrate on showing only the dependencies
between the class ScriptingEngine and package FreeMind as these
are the most important from the point of view of the PA .

There are two higher level layers in the architecture, repre-
sented by the packages script and FreeMind. Inside the script
layer it is shown just the class ScriptingEngine, as it belongs to
the rule prescribed by the PA. As can be seen, there are 17
(seventeen) dependencies from the ScriptingEngine class to others
of the package FreeMind: Controller, ControllerAdapter, FreeMind,
FreeMindMain, FreeMindSecurityManager, HookAdapter, MindMap,

13

MindMapController, MindMapHookAdapter, MindMapNode, Mode-
Controller, NodeAttributeTableModel, OptionalDontShowMeAgainDi-
alog, StandartPropertyHandler, Resources, Tools and BooleanHolder.
Therefore, Pruijt et al. (2017) state that there are 17 architectural
violations/drifts in this system that should be find out by an ACC
approach.

As we have done with LabSys, we also had to create a specifi-
cation of the PA of FreeMind for generating a KDM instance rep-
resenting this system. Listing 3 shows the PA we have specified
for FreeMind.

architecturalElements{
subSystem freemindSystem;

layer freemind, level 1, inSubSystem:
level 1, inSubSystem:

freemindSystem;
freemindSystem;

component script, inLayer: plugins;

1
2
3
4
5 layer plugins,
6
7
8
9 component main, inSubSystem: freemind;
10
1
12
13
14
15
16
17
18
19 }

component controller, inLayer: freemind;

layer modes, freemind;
component
component

component

level 1, inLayer:
extensions, inLayer: freemind;
common, inLayer: freemind;
mindmapnode, inLayer: modes;
attributes, inLayer: modes;

hooks, inLayer: modes;

component
component
}restrictions{
script cannot-depend freemind;

Listing 3: Specification of the Planned Architecture of FreeMind

Line 2 specifies the freemindSystem sub-system. Lines 4 — 5
specify two layers (FreeMind and plugins) inside freemindSystem.
Line 7 specifies a component (script) inside layer plugins. Lines
9 — 10 and 12 — 13 specify 4 components inside freemindSystem.
Line 11 specifies e layer inside freemindSys. Lines 14— 16 specifies
3 components inside modes layer. Line 18 specifies the unique
restriction rule.

Notice that the granularity level of architectural violations
considered by Pruijt is different from ours. They work in a higher
abstraction level, considering as violations/drifts accesses in
classes and interfaces. For example, it does not matter if the

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

Table 12

Tools assessed by Pruijt et al. (2017).

Techniques ConQAT Dependometer dTrangler JITTAC Lattix Macker SAVE Sonar ARE Sonargraph structure 101
Text-based X X X

Dependency Structure Matrix (DSM)
Reflexion Model
Diagram-based

Table 13

Results of the architectural violations identification for FreeMind: 1 = detected and 0 = not detected.

Source: Adapted from Pruijt et al. (2017).

Reported classes

Nr of Dep. Arch-KDM ConQAT Dependometer dTrangler JITTAC Lattix Macker SAVE Sonar ARE Sonargraph

structure 101

—_
—_

Controller 1
ControllerAdapter 5
FreeMind 12
FreeMindMain 16
FreeMindSecurityManager
HookAdapter

MindMap
MindMapController
MindMapHookAdapter
MindMapNode
ModeController
NodeAttributeTableModel
OptionalDontShowMeAgain-
Dialog
StandardPropertyHandler
(inner)

Resources

Tools

BooleanHolder (inner)

1(1)
1)

w

)
[N N N NI N o S N N

_ o o e e e e O = O

AN —= U =D

—_
o
o
—_

a N
_
N
N
[,
etk

—_

_ o b e e e e O = OO

o

[,

—_
—_

1

—_
—_

o e e e e e e e
_ o e e e O kOO
o e e e O kOO
o e e e e e e e e
_ o e e e O kOO

—_ O e e e e O e O
P P O MmO O

—_
o
—_
o
—_
—_
—_

—_
[I,
—_
[I,
—_
_
_

Number of classes or
interfaces identified
Recall (in%)

71 88

71

17

100 71 82 88 82 88 82

class ScriptingEngine had one or many dependencies to another
class X, they will count as only 1 violation, i.e., the cardinality of
the dependency is not important. In our case, we would count
every dependency as a violations. Therefore, in order to allow
a fair comparison, in this part of evaluation we adopt the same
counting strategy as Pruijt.

Step 2 - Running the Architectural Checking Process on
FreeMind. Likewise we have done with LabSys, we have also
applied Arch-KDM for identifying the drifts of FreeMind. The
steps are not detailed here but follows the same already pre-
sented earlier. Initially we have used our Wizard for mapping the
abstractions declared in the PA to the source-code of the system.
After that, we could trigger the checking process and get the
results.

Step 3 - Results of ACC using Freemind System

As previously said, this second part of evaluation was con-
ducted with the support of the existing work of Pruijt et al.
(2017). In that paper the authors compare 10 (ten) ACC Ap-
proaches using the FreeMind System and present the recall of
each ACC approach. Therefore, it was a great opportunity of
comparing several approaches with Arch-KDM.

Table 12 shows all tools evaluated by Pruijt et al. and results
of each. Pruijt et al. (2017). As can be noted, the evaluated
tools support different techniques (first column) to identify vio-
lations. For instance, Dependometer, Macker, and Sonar Architec-
ture Rule Engine (Sonar ARE) are text-based tools. On the another
hand, dTangler and Lattix rely on Dependency Structure Matrix
(DSM). Also, ConQAT Architecture Analysis, JITTAC, and SAVE are
based on the Reflexion Model technique. Lastly, Sonargraph and
Structure101 are diagram-based.

Table 13 was adapted from Pruijt et al. (2017) and shows the
results for each of the 10 tools tested by them plus the results
we have obtained for Arch-KDM. We have opted for leaving all
the tools tested by them so that we can compare the results of

14

Arch-KDM with the others. The first column shows the name of
17 (seventeen) classes/interfaces from which the class Scriptin-
gEngine depends on. All of these classes are within the freemind
package, so according to the rule of the PA presented by the
authors, these 17 elements should be identified as violations/-
drifts. The column Nr. of Dep. indicates the number of existing
dependencies from ScriptingEngine to the respective class. For
instance, ConQAT has identified at least 1 dependency between
ScriptingEngine and FreeMindMain. Conversely, ConQAT did not
identify any dependency between these two classes.

In Table 13, for each ACC Approach, the number 1 indicates
it was able to identify that violation and O indicates the op-
posite. The last line of the table is the recall value for each of
the approaches. Arch-KDM obtained better results than 6 (six)
approaches (ConAQT, dTrangler, Lattix, Macker, Sonar ARE and
structure 101); equal results for three approaches (Dependome-
ter, SAVE and Sonoargraph) and worse results than JITAC. That is,
ArchKDM was not able to identify two dependencies:

(a) ScriptingEngine — MindMap and;
(b) ScriptingEngine —> StandardPropertyHandler

This was expected because at this moment Arch-KDM does
not take into account indirect/transitive dependencies. An in-
direct dependency is a dependency in the from-class of which
the to-class cannot be determined without the analysis of the
code of another class (Pruijt et al., 2017). In general, a depen-
dency relation is indirect, when the dependency exists transi-
tively through an intermediate module. For example, in depen-
dency (a), MindMap is a java interface and a way to determine
if there is an indirect dependency between ScriptingEngine and
MindMap is by analyzing the direct dependency between Scriptin-
gEngine and MindMapNode. In turn, MindMapNode has a direct
dependency with MindMap through MindMapgetMap() method
declaration. Therefore, there is an indirect dependency between
ScriptingEngine and MindMap.

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

Table 14

Accuracy of Arch-KDM in freemind evaluation.
Precision Recall F-measure
100% 88.2% 93.7%

In dependency (b), StandardPropertyHandler is an inner class
that belongs to the OptionalDontShowMeAgainDialog class. In this
case ScriptingEngine call StandardPropertyHandler by instantiating
it by using the operator new in the following manner: new Op-
tionalDontShowMeAgainDialog.StandardPropertyHandler(..). There-
fore, Arch-KDM only identifies the OptionalDontShowMeAgainDi-
alog class as a dependency.

Regarding the precision, recall, and f-measure, we calculated
these metrics taking into accounts the dependencies between
ScriptingEngine and the 17 reported classes (Pruijt et al., 2017)
of package freemind. In this case, the Arch-KDM should have
reported only the dependencies (drifts) with these 17 classes (see
in Table 13). If the Arch-KDM reported any dependency with
another class of package freemind, this was to consider a false pos-
itive (FP). Likewise, if the Arch-KDM did not report an expected
dependency, this was considered a false negative (FN). A true
positive (TP) occurs when the Arch-KDM reported an expected
dependency and, a false positive (FP), in this evaluation, is always
0 because according to Pruijt et al. (2017), the ScriptingEngine
depends on only these 17 reported classes.

Table 14 shows the values(in %) of precision, recall and f-
measure. As noted, the recall value is 88.2%. This indicating that
of all dependencies between ScriptingEngine and package freemind
our approach was able to identity 88.2% of them. This is a high
value, indicating that our approach performs well to identify the
positive instances of architecture drifts. Regarding precision, we
achieved 100%. However, we believe that this occurs because the
oracle does not contain false positives . Lastly, the f-measure
value is 93.7%, indicating that the Arch-KDM performs so that the
closer to the total is the result.

Table 15 shows the type of drift found by Arch-KDM. The first
column shows the reported classes, the last column represents
the total of dependency and, the rest columns show the type of
drift. For instance, ScriptingEngine depends on MindMapController
and makes 2 Calls, 1 HasType and 1 Import - 4 in total (last
column).

As can be noted in Table 15, Arch-KDM was able to identify
drift of type Extends, that was not identified in LabSys evaluation.
The main goal here is to show that our approach was able to
identify this type of architecture drifts. That is, if Arch-KDM can
identify at least one instance of a drift, it can be used to detect
other instances in the system.

4.3. Fine-grained analysis of drifts in freemind

In this subsection, we perform a fine-grained analysis of the
drifts identified by Arch-KDM in Freemind. As there are several
cases to be analyzed we will take a specific one as an example;
ScriptingEngine —> FreeMindMain.

Table 13 shows the number of dependencies between Scriptin-
gEngine and several classes/interfaces. Particularly, according to
Pruijt et al. (2017) the relationship ScriptingEngine ——>
FreeMindMain has 16 dependencies. We analyzed the Scriptin-
gEngine class to corroborate this number, which is correct and
we also verified why Arch-KDM could not identify these depen-
dencies. Table 16 shows the fine-granular dependencies between
ScriptingEngine and FreeMindMain classes.

The first column depicted with a “X” represent all depen-
dencies identified by Arch-KDM. The second column shows the
code element of ScriptingEngine class that is responsible for the

15

The Journal of Systems & Software 183 (2022) 111116

existence of the relationship. The third column shows the code
element of FreeMindMain class that receives the relationship. The
fourth column presents the type of the relationship and the fifth
column depicts the line number where occurs the relationship in
the source-code.

The result of our analysis indicates that Arch-KDM did not
identify the six drifts due to a lack of representation of the
KDM instance. For example, Listing 4 shows the code that cor-
responds to the line 156 of ScriptingEngine. It is an assignment
statement that involves a “new” operator for instantiating the Op-
tionalDontShowMeAgainDialog class. The constructor of this class
receive several parameter where one of them is a method call
frame.getJFrame() (lines 2 — 3).

Listing 5 shows the corresponding code of Listing 4 in the KDM
instance that was generated by MoDisco. The code relation of
line 6 of type HasValue indicates that there is a relationship to
an “Element method invocation” but the KDM instance does not
implement the assignment.

Finally, the recall in percentage of Arch-KDM by taking into
account all fine-grained dependencies is % ~ 46%. Although
this number is not quite so good, it is heavily influenced by
the completeness of the KDM instance. Therefore, if the KDM
instance truly can represent the whole source-code the accuracy
of Arch-KDM will be incremented notoriously. However, another
possibility is to change KDM in order to represent this part.

4.4, Threats to validity

We can list the following threats:

e Regarding the PA created for Freemind evaluation. Someone
could argue the package freemind should have mapped and
the unique rule should be: script cannot-depend freemind. We
claim that this does not affect the evaluation because all the
packages that ScriptingEngine depends on were defined in
the PA. So, the Arch-KDM should report the same violations.

e The granularity of Freemind evaluation. Someone could ar-
gue the results of Arch-KDM cannot be compared with Pruijt
et al. (2017) because is not in the same level of granularity,
i.e., those authors group all the fine grained dependencies
in just one, represented by a dependency between classes.
However, the comparison is indeed fair in our point of view.
All the others approaches presented by those authors in
Table 13 were also analyzed by grouping fine-grained de-
pendencies. When the authors present that some approach
has identified the drift, it is not presented if the approach
was able to find out all the existing dependencies or just
one of them. Therefore, we did the same.

e The use of just two systems and the complexity of them.
Someone could argue that the ideal would be conducting
the evaluation with more than two systems. However, we
claim that this does not affect the evaluation so much.
This happens because the systems to have the conformance
checked are represented as KDM instances — there is a
standard representation way. If Arch-KDM has been able
to identify a specific type of drift (for example, method
calls), it will be able to detect this same type of drift in any
KDM-represented system. Therefore, we could concentrate
in systems having other types of drifts rather than the ones
presented in LabSys and Freemind;

e Regarding to the process of building the oracle of LabSys
evaluation. Someone could also argue the way the ora-
cle was built benefited the identification process. To min-
imize this threat we have followed a three-step process as
described in step 1 of Section 4.2.1;

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

The Journal of Systems & Software 183 (2022) 111116

Table 15
Number of drifts identified by Arch-KDM per type.
Classes which ScriptingEngine depends on Calls Creates Extends HasType Implements Imports UsesType Total
Controller 1 0 0 0 0 0 0 1
ControllerAdapter 1 0 0 0 0 0 0 1
FreeMind 0 0 0 0 0 1 0 1
FreeMindMain 8 0 0 1 0 1 0 10
FreeMindSecurityManager 0 0 0 1 0 1 0 2
HookAdapter 3 0 0 0 0 0 0 3
MindMap 0 0 0 0 0 0 0 0
MindMapController 2 0 0 1 0 1 0 4
MindMapHookAdapter 1 0 1 0 0 1 0 3
MindMapNode 0 0 0 5 0 1 0 6
ModeController 2 0 0 0 0 0 0 2
NodeAttributeTableModel 1 0 0 1 0 1 0 3
OptionalDontShowMeAgainDialog 0 0 0 0 0 1 0 1
StandardPropertyHandler (inner) 0 0 0 0 0 0 0 0
Resources 2 0 0 0 0 0 0 2
Tools 1 0 0 0 0 1 0 2
BooleanHolder (inner) 3 1 0 4 0 1 0 9
Total 25 1 1 13 0 10 0 50
Table 16
Dependencies between ScriptingEngine and FreeMindMain.
From To Type Line
X plugins.script.ScriptingEngine freemind.main.FreeMindMain Imports 41
X plugins.script.ScriptingEngine.performScriptOperation freemind.main.FreeMindMain.setWaitingCursor Calls 98
X plugins.script.ScriptingEngine.performScriptOperation freemind.main.FreeMindMain.setWaitingCursor Calls 125
X plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain HashType 153
plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.getFrame Calls 156
plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.getProperty Calls 195
plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.getProperty Calls 197
plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.getProperty Calls 199
plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.getProperty Calls 201
plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.getProperty Calls 203
X plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.setProperty Calls 267
X plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.setProperty Calls 271
X plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.setProperty Calls 275
X plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.setProperty Calls 279
X plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.setProperty Calls 282
X plugins.script.ScriptingEngine.executeScript freemind.main.FreeMindMain.getResourceString Calls 324
1 int showResult = new OptionalDontShowMeAgainDialog (frame
2 .getJFrame (), pMindMapController.getSelectedView(),
3 "really_execute_script", "confirmation"
4 pMindMapController,
5 new OptionalDontShowMeAgainDialog.StandardPropertyHandler (
6 pMindMapController.getController (),
7 FreeMind.RESOURCES_EXECUTE_SCRIPTS_WITHOUT_ASKING) ,
8 OptionalDontShowMeAgainDialog.ONLY_OK_SELECTION_IS_STORED)
9 .show () .getResult () ;

Listing 4: Code Snippet of the Drift of Line 156

1 <codeElement xsi:type="code:StorableUnit" name="showResult" type="//@model.0/@codeElement.5/@codeElement.0" kind="local">

2 <attribute tag="export" value="none"/>

3 <source language="java">

4 <region file="//@model.2/@inventoryElement.415" language="java"/>

5 </source>

6 <codeRelation xsi:type="code:HasValue" to="//@model.l/@codeElement.4859" from="//@model.0/QcodeElement.3/
@codeElement .3/@codeElement.1/@codeElement.8/@codeElement.1/@codeElement .1/@codeElement .1/@codeElement
.0/@codeElement .0"/>

7 <codeRelation xsi:type="code:HasType" to="//@model.0/@codeElement.5/@codeElement.0" from="//@model.0/
@codeElement.3/@codeElement.3/@codeElement.1/@codeElement.8/@codeElement.1/@codeElement .1/@codeElement
.1/@codeElement.0/@codeElement.0"/>

8 </codeElement>

Listing 5: Code Snippet of Drift of Line 156 in KDM

e The reliance on Software Engineers to evaluate the results. application of the judging method, as is possible in evalua-
tions with humans, the results may have been affected by

Although the results of LabSys were evaluated through the some degree of subjectivity (construction validity).

16

A.d.S. Landi, D.S. Martin, B.M. Santos et al.
5. Related works
5.1. Works related to DCL-KDM

Currently, there are several strategies to specify and serial-
ize a Planned Architecture in ACC approaches. Nevertheless, the
majority employs Architectural-Description Languages (ADL) for
its specification and proprietary metamodels for its serializa-
tion (Stafford, 2001; Aldrich et al., 2002; Sneed, 2005; Sangal
et al., 2005; Abi-Antoun and Jonathan, 2008; Duszynski et al.,
2009; Deissenboeck et al., 2010; Adersberger and Philippsen,
2011; Herold and Rausch, 2013; Maffort et al., 2016). Unfortu-
nately, the use of proprietary metamodels hinders interoperabil-
ity between tools. Besides, most of the existing ADLs provide just
modules, ports and connectors (Hussain, 2013), and none of them
focus on automatic generation of rules for strict layering and
composition. So they would only use a small part of the KDM. To
the best of our knowledge, only our research group in this paper
and also in another project (San Martin and Camargo, 2021), have
dedicated efforts for specifying planned architectures in KDM and
also considering pre-defined architectural rules. In this way, the
related works present some support for specifying PAs; graphical
or textual.

SAVE (Duszynski et al., 2009) is an ACC approach that iden-
tifies convergent, divergent and absent relationships in a system
architecture. SAVE employs two proprietary metamodels: a high-
level model for specifying the PA and a source code model for
the current system implementation. LDM (Sangal et al., 2005)
relies on Dependency Structure Matrices (DSMs) to perform ACC.
A DSM is a weighted square matrix whose rows and columns
denote classes from an object-oriented system and the number
of references from B to A is represented in the cell (A, B). Stafford
and Wolf (Stafford, 2001) have proposed a dependency analysis
technique with ADLs. Their focus is on the representation of
components, input and output ports and not architectural styles
of higher-level architectural components.

ReflexML (Adersberger and Philippsen, 2011) defines the trace-
ability of UML component models to code using AOP type pattern
expressions. Herold and Rausch (2013) express architectural rules
as formulas on a common ontology and models are mapped
to instances of that ontology. A knowledge representation and
reasoning system is then used to check whether the architectural
rules are satisfied for a given set of models.

Archjava and ArchLint rely on AST as the underlying model for
performing ACC. ArchJava (Aldrich et al., 2002) extends Java with
architectural modeling constructs that seamlessly unify software
architecture with implementation, ensuring that the implemen-
tation is according to the architectural constraints. ArchLint (Maf-
fort et al., 2016) is a data mining approach for ACC that identifies
architectural violations based on a combination of static and
historical source code analysis.

In San Martin and Camargo (2021) we present a DSL for
specifying PAs in the context of Adaptive Systems. Our language
provides adaptive-systems specific abstractions so that engineers
can be more precise when describing the planned architecture.

5.2. Works related to ACC

Researchers have been proposing Architectural Conformance
Checking approaches based on several underlying models, in
which we divided in the following four groups: (i) AST-based
approaches; (ii) Graph-based ACC approaches; (iii) MDE-based
approaches and (iv) other approaches.

AST-based ACC approaches: DCL (Terra and Valente, 2009),
Archjava, and ArchLint rely on AST (Abstract Syntax Tree) as
the underlying model for performing ACC. DCL employs static

17

The Journal of Systems & Software 183 (2022) 111116

analysis for identifying the structural dependencies that do not
respect the rules specified in the PA. Archjava extends Java with
architectural modeling constructs that seamlessly unify software
architecture with implementation, ensuring that the implemen-
tation is according to the architectural constraints. ArchLint is
a data mining approach for ACC that identifies architectural vi-
olations based on a combination of static and historical source
code analysis that frees architects from specifying the architec-
tural constraints. These three studies share the same weakness.
Although they achieve proper levels in ACC, they do not support
multiple languages, architectural styles, and explicitly hierarchy
between the architectural elements as our approach does.

Graph-based ACC approaches: ConQAT (Deissenboeck et al.,
2010), SAVE (Knodel and Popescu, 2007; Duszynski et al., 2009),
and SotoArch/Sotograph (Bischofberger et al., 2004) rely on
graphs as the underlying model to perform ACC. ConQAT identi-
fies divergences and absences based on the comparison between
a machine-readable specification of the intended architecture
and the knowledge of the dependencies extracted automatically
from the source code. Based on pure reflexion model concepts,
SAVE highlights convergent, divergent, and absent relationships
between the high-level model and the source code model that
are also automatically extracted from the source code. SotoAr-
c/Sotograph provides means to visualize and understand the
static structure of a software system, including modeling the
intended architecture and detecting architectural violations. Al-
though complete and accurate, these tools rely on proprietary
models to represent the intended architecture. Our approach, on
the other hand, relies on an ISO metamodel (KDM) to repre-
sent the PA and CA. It means that researchers who are familiar
with KDM can develop and improve any of our approach steps,
e.g., implementing a more sophisticated CA extraction algorithm
or performing high-level refactorings for the identified violations.

MDE-based ACC approaches: ArchConf
(Abi-Antoun and Jonathan, 2008), ReflexML (Adersberger and
Philippsen, 2011), and Herold and Rauschs approach (Herold and
Rausch, 2013) rely on MDE models to perform ACC. ArchConf
generates a conformance view and computes metrics between
two C&C (component and connector) views. They represent var-
ious languages of the system in metamodel form of the relevant
source artifacts at the desired level of detail. ReflexML defines
the traceability of UML component models to code using AOP
type pattern expressions. Herold and Rausch express architectural
rules as formulas on a common ontology where models are
mapped to instances of that ontology. A knowledge represen-
tation and reasoning system is then used to check whether the
architectural rules are satisfied for a given set of models. Although
MDE-based approaches promote reuse, they do not accurately
represent implementation details. Our approach, however, relies
on KDM, which provides metaclasses to represent architectural
elements and allows source code elements to be represented with
one-to-one precision.

Other ACC approaches: LDM (Sangal et al., 2005) relies on
Dependency Structure Matrices (DSM) to perform ACC. A DSM is
a weighted square matrix whose both rows and columns denote
classes from an object-oriented system, and the number of refer-
ences that B contains to A is represented in cell (A, B). Although
DSM is important for documentation purposes and communi-
cation with stakeholders, it is not an architecture specification
independent of the system’s implementation. In the dynamic
analysis research line, DiscoTect (Yan et al., 2004) dynamically
monitors a running system to derive its software architecture.
Thus, architects can develop mappings to exploit regularities in
the system implementation and architectural styles. Similarly,
ConArch (Ciraci et al,, 2012) is a run-time verification approach
for detecting inconsistencies between the dynamic behavior of

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

the documented architecture and the actual run-time behavior.
However, these studies share the same problem: mappings be-
tween low-level system observations and architectural events
are not usually one-to-one and hence it is not straightforward
to indicate implementation patterns that represent the target
architecture.

6. Conclusion

This paper presented the Arch-KDM approach, an
Architectural-Conformance Checking approach to be used in the
context of Architecture-Driven Modernization (ADM). All the
steps of the approach rely on the KDM, which is a platform
and language-independent metamodel from OMG. The tooling
support we have developed is composed by:

e A Domain-Specific Language (DSL) called DCL-KDM. It al-
lows the specification of Planned Architectures using terms
like layer, component and module. This DSL also allows
specifying the communication restrictions among these ar-
chitectural abstractions. An important characteristic here is
that the PA is serialized like a KDM instance;

e A Wizard that allows the extraction of the Current Architec-
ture (CA) of the legacy system. To do that, the user must
deliver to the Wizard a system represented in KDM. In a
similar manner, the CA is also serialized as a KDM instance;

e An engine that compares both architecture representations
(PA and CA) in order to detect the drifts. As the PA and
CA are represented as KDM instances, all the algorithms of
the engine can work over the same taxonomy, making them
clearer since they work on the same metamodel.

It is important to clarify that our approach works exclusively
on the identification of fine-grained drifts such as method calls,
implementation, inheritance relationships, object creation, type
cast or conversions, and package imports. Higher-level drifts are
not detected by our approach, for instance, the absence of archi-
tectural abstractions.

Our approach checks the conformance of systems
implemented in any language. This check is possible because by
using our Wizard, we can recovery the CA from systems repre-
sented in KDM, so the engine is independent of specific languages
and platforms. After this step, all the checking algorithms work
over KDM representations. Besides, as our algorithms are based
on an ISO pattern, they have a high potential for reuse. This does
not happen when algorithms are developed over a proprietary or
language-dependent model.

A meaningful discussion here is regarding the suitability of
KDM for representing software architecture. The Code Package
can represent low-level details; however, the quality of the Struc-
ture package is harder to evaluate. For example, although the
Structure package has the most conventional metaclasses for
representing architectural details, it lacks some other important
ones, such as: Filters, Connectors, Ports, and Required/Provided
Interfaces. It is worth to notice that we did not extend KDM to
represent architectural details; thus, we have worked just with
the existing KDM abstractions.

In the last step of our approach, both KDM representations (PA
and CA) are compared, and a list of architectural violations is ob-
tained. As both system representations are instances of the same
metamodel, the algorithm (see Algorithm 2) becomes clearer,
easier to understand, and, as a consequence, easier to maintain,
reuse, and evolve. The usage of KDM does not impact the process
quality, mainly because the Code metamodel is in an abstrac-
tion level very similar to the source code. Thus, every detail to
perform an architectural checking, such as dynamic code actions
(calls, instantiations, etc.) are available. Although checking for

18

The Journal of Systems & Software 183 (2022) 111116

relationships is the unique type of ACC we cover, this is also the
most common type of deviations existent in software systems.
We claim the deviation types we have approached here represent
a significant portion of all architectural deviation that occurs in
reality

We are aware that efficacy of the ACC proposed process de-
pends on the completeness of the PA specification and the correct
mapping with the source code. Besides, currently the process is
not automatically triggered, so software architects would have
also to consider including a new step in the life cycle of the
system. The first point can be amended by establishing a sys-
tematic procedure for checking the specifications/mappings in
order to observe whether changes/updates must be performed.
Although this can bring a burden for software architects, we
believe the frequency of that is not high. The second point can
easily be implemented in order to make the process automatic,
for example, triggering the checking process at every commit.
Clearly, this alternative could make the proposal more reasonable
to be adopted by the industry, where the pressure for shorter
delivery periods are intense.

Besides the approach by itself, another theoretical contribu-
tion is the formalization of the terms architectural drift and
architectural violation. Herein, architectural drift is what software
engineers are looking for in order to fix the problem. Many times
this is a line of source code. This formalization was necessary
in consequence of the way KDM represents source code details.
The Code Package represents source code at a low abstraction
level, so a single line of source code is represented as several
metaclass instances. As a result, many times, a single instance is
not representative or useful from the architect’s point of view. So,
we decided to call “violation” each metaclass instance that can
be involved in an architectural drift. Therefore, an architectural
drift for us is a set of architectural violations. An essential point
of this end-to-end approach is the demonstration that a complete
ACC approach can be conducted using just the KDM metamodel,
which differs from other approaches found in literature, as can
be seen in the related works section. However, for representing
Planned Architectures with KDM we have to represent the access
rules between architectural elements using the KDM Aggregated
Relationship, i.e., the absence of a specific type of relationship
inside the aggregated means denied access. This is a partic-
ular way of using this kind of KDM relationship, but it was
very useful in this context. We expect the research community
publishes more evidences of KDM, so that ADM can genuinely be-
come the de-facto standard way of conducting software systems
modernization.

Regarding the scalability of our approach, it depends the most
on the capacity of the tool used for generating the KDM for big
systems. Currently, Modisco takes some time for representing big
systems as KDM instances. However, once we have this instance
at hands, the process of checking the conformance is not time-
consuming. Another related point is regarding the complexity of
the PA for big systems, but again, this depends on the level of
detail that will be employed.

Although this work present Arch-KDM as an Architecture-
Conformance Checking solution to be used in ADM (Architecture-
Driven Modernization) context, it is not restricted to it. That
is, Arch-KDM can be used in any situation in which engineers
need to identify the drifts of the system. However, as KDM is
introduced by OMG as a standard way for representing systems
in ADM context, it is in this context that Arch-KDM makes more
sense. This happens because the architecture-conformance check-
ing process is just one of the activities of a whole modernization
process, so in a ADM-based process, all the other phases will
also employ KDM. Therefore, this will make much easier the
interoperability with the other modernization tools.

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

From the point of view of practical usage, this work can
be seen as a starting point for motivating companies adopting
KDM. Currently, there are several organization that have already
adopted KDM in modernization processes (Ulrich and Newcomb,
2010), such as KDMAnalytics and ADA Software, however we en-
visage there are many other that could benefit from this standard
so that their tools become interoperable.

As future works, we can mention the following: (i) Inves-
tigate the reusability of KDM solutions. We have developed in
the last years several solutions that act over KDM, which makes
these solutions platform and language-independent. For exam-
ple, we have developed mining algorithms (Santibafiez et al,,
2015; Santibanez et al,, 2013), profiles (Santos et al., 2019a),
refactorings (Durelli et al., 2017, 2014c,b). Other researchers have
published solutions in the context of ADM (Pérez-Castillo et al.,
2011; Bruneliere et al., 2010; Eclipse, 2017; Santos et al., 2019b;
Durelli et al, 2014a). As the main goal of OMG is the inter-
operability of modernization tools, an important future work is
the development of KDM-based modernization tools; (ii) Devel-
opment of reverse engineering tools. The lack of parsers (dis-
coveries) that generate KDM from other languages out of Java
hinders a widespread adoption of KDM/ADM. Up to this moment,
only Modisco provides good support for Java language. So, the
lack of parsers for other languages, make the adoption difficult.
(iii) The extension of Arch-KDM. In order to support indirect
dependencies we will implement some algorithms to identify
transitive dependencies that involve interfaces, inner classes and
abstract classes. It is straightforward to implement it because the
AggregatedRelationship class of KDM contains the “to” attribute.
This attribute will be the new “from” attribute and we just will
need to check that the type of the “to” for the new “from” must
be of the type sought.

CRediT authorship contribution statement

André de S. Landi: Conceptualization, Methodology, Software,
Investigation, Writing - original draft. Daniel San Martin: Writ-
ing - review & editing, Validation, Software, Visualization. Bruno
M. Santos: Investigation, Writing - review & editing. Rafael S.
Durelli: Supervision, Writing - review & editing. Valter V. Ca-
margo: Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

Daniel San Martin would like to thank the National Agency for
Research and Development (ANID) PFCHA/DOCTORADO BECAS
CHILE/2016- 72170024. Valter Vieira de Camargo also would like
to thank FAPESP (p.n. 2016/03104-0).

References

Abi-Antoun, M., Jonathan, A., 2008. Tool Support for the Static Extraction of
Sound Hierarchical Representations of Runtime Object Graphs. ACM, pp.
743-744.

Adersberger,]., Philippsen, M., 2011. ReflexML: UML-Based Architecture-to-
Code Traceability and Consistency Checking. Springer Berlin Heidelberg, pp.
344-359.

Aldrich, J., Chambers, C., Notkin, D., 2002. ArchjJava: connecting software archi-
tecture to implementation. In: 24rd International Conference on Software
Engineering, (ICSE). pp. 187-197.

Avgeriou, P., Guelfi, N., 2005. Resolving architectural mismatches of COTS
through architectural reconciliation. Lecture Notes in Comput. Sci. 3412,
248-257.

19

The Journal of Systems & Software 183 (2022) 111116

Bandara, V., Perera, 1., 2019. Identifying software architecture erosion through
code comments. pp. 62-69.

Bischofberger, W., Kiihl,]., Loffler, S., 2004. Sotograph - a pragmatic approach
to source code architecture conformance checking. In: Software Architecture.
pp. 1-9.

Borah, B., Bhattacharyya, D.K,, 2004. An improved sampling-based DBSCAN
for large spatial databases. In: 2nd International Conference on Intelligent
Sensing and Information Processing, (ISIP). pp. 92-96.

Bouckaert, R.R., Frank, E., Hall, M.A., Holmes, G., Pfahringer, B., Reutemann, P.,
Witten, LH., 2010. WEKA-experiences with a Java open-source project.].
Mach. Learn. Res. 11 (5), 2533-2541.

Bruneliére, H., Cabot, J., Dupé, G., Madiot, F., 2014. Modisco: A model driven
reverse engineering framework. Inf. Softw. Technol. 56 (8), 1012-1032.
Bruneliere, H., Cabot, J., Jouault, F., Madiot, F., 2010. Modisco: A generic
and extensible framework for model driven reverse engineering. In: 25th
International Conference on Automated Software Engineering, (ASE). pp.

173-174.

Ciraci, S., Sozer, H., Tekinerdogan, B., 2012. An approach for detecting in-
consistencies between behavioral models of the software architecture and
the code. In: 36th Annual Computer Software and Applications Conference,
(COMPSAC). pp. 257-266.

Chagas, F., Durelli, RS., Terra, R, Camargo, V.V, 2016. Kdm as the under-
lying metamodel in architecture-conformance checking. In: 30th Brazilian
Symposium on Software Engineering, (SBES). pp. 103-112.

de Silva, L., Balasubramaniam, D., 2012. Controlling software architecture
erosion: A survey.]. Syst. Softw. 85 (1), 132-151.

Deissenboeck, F., Heinemann, L., Hummel, B., Juergens, E., 2010. Flexible architec-
ture conformance assessment with conqat. In: 32nd International Conference
on Software Engineering, (ICSE). pp. 247-250.

Durelli, RS., Santibafiez, D.S.M., Marinho, B., Honda, R., Delamaro, M.E., An-
quetil, N., Camargo, V.V., 2014a. A mapping study on architecture-driven
modernization. In: 15th International Conference on Information Reuse and
Integration, (IRI). pp. 577-584.

Durelli, RS., Santibanez, D.S.M., Delamaro, M.E., Camargo, V.V., 2014b. To-
wards a refactoring catalogue for knowledge discovery metamodel. In: 15th
International Conference on Information Reuse and Integration, (IRI). pp.
569-576.

Durelli, R., Santos, B., Honda, R., Delamaro, M.E., Camargo, V.V., 2014c. Kdm-RE:
A model-driven refactoring tool for KDM. In: 5th Workshop on Software
Visualization, Maintenance, and Evolution, (VEM). pp. 1-10.

Durelli, RS., Viana, M.C,, de S. Landi, A., Durelli, V.H.S., Delamaro, M.E., Ca-
margo, V.V., 2017. Improving the structure of KDM instances via refactorings:
An experimental study using KDM-RE. In: 31st Brazilian Symposium on
Software Engineering, (SBES). pp. 174-183.

Duszynski, S., Knodel, J., Lindvall, M., 2009. SAVE: Software architecture vi-
sualization and evaluation. In: 13th European Conference on Software
Maintenance and Reengineering, (CSMR). pp. 323-324.

Eclipse, 2017. Modisco. http://eclipse.org/MoDisco/.

Ester, M., Kriegel, H.-P., Sander,]., Xu, X, et al., 1996. A density-based algorithm
for discovering clusters in large spatial databases with noise. In: KDD. pp.
226-231.

da Fonseca, RJ.R.M., dos Santos Ponte Silva, PJ., da Silva, R.R,, et al., 2007. Acordo
inter-juizes: O caso do coeficiente kappa. Lab. Psicol. 160 (8), 81-90.

Garner, S., 1995. WEKA: The waikato environment for knowledge analysis. In:
Proc New Zealand Computer Science Research Students Conference. pp.
57-64.

Hannemann, J., Murphy, G.C, Kiczales, G. 2005. Role-based refactoring of
crosscutting concerns. In: 4th International Conference on Aspect-Oriented
Software Development, (AOSD). pp. 135-146.

Herold, S., Mair, M. 2014. Recommending refactorings to re-establish
architectural consistency. In: Software Architecture. pp. 390-397.

Herold, S., Rausch, A., 2013. Complementing model-driven development for the
detection of software architecture erosion. In: 5th International Workshop
on Modeling in Software Engineering, (MiSE). pp. 24-30.

Hussain, S., 2013. Investigating architecture description languages (adls) a
systematic literature review.

Ivkovic, 1., Kontogiannis, K., 2006. A framework for software architecture
refactoring using model transformations and semantic annotations. In:
10th Conference on Software Maintenance and Reengineering, (CSMR). pp.
10-144.

Knodel, J., Popescu, D., 2007. A comparison of static architecture compliance
checking approaches. In: 2nd IEEE/IFIP Conference on Software Architecture,
(WICSA). p. 12.

Koschke, R., 2018. Industrial experience on code clean-up using architectural
conformance checking.

Landgrebe, T.C.W., Paclik, P., Duin, R.P.W., 2006. Precision-recall operating char-
acteristic (p-ROC) curves in imprecise environments. In: 18th International
Conference on Pattern Recognition (ICPR’06). pp. 123-127.

http://refhub.elsevier.com/S0164-1212(21)00213-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb2
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb2
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb2
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb2
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb2
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb5
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb5
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb5
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb8
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb8
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb8
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb8
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb8
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb13
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb13
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb13
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb14
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb14
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb14
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb14
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb14
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb16
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb18
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb19
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb19
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb19
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb19
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb19
http://eclipse.org/MoDisco/
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb22
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb22
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb22
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb25
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb25
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb25
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb26
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb26
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb26
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb26
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb26
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb27
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb27
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb27
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb29
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb29
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb29
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb29
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb29
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb30
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb30
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb30
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb31

A.d.S. Landi, D.S. Martin, B.M. Santos et al.

Landi, A.d.S., Chagas, F., Santos, B.M., Costa, RS. Durelli, R, Terra, R, Ca-
margo, V.V., 2017. Supporting the specification and serialization of planned
architectures in architecture-driven modernization context. In: 41st Annual
Computer Software and Applications Conference, (COMPSAC). pp. 327-336.

Maffort, C., Valente, M.T., Terra, R., Bigonha, M., Anquetil, N., Hora, A., 2016.
Mining architectural violations from version history. Empir. Softw. Eng. 21
(3), 854-895.

Makhoul, J., Kubala, F., Schwartz, R., Weischedel, R., et al., 1999. Performance
measures for information extraction. In: DARPA Broadcast News Workshop.
pp. 249-252.

Matos, D.AS., 2014. Confiabilidade e concordadncia entre juizes: aplicacdes na
area educacional.

Murphy, G.C., Notkin, D., Sullivan, KJ., 2001. Software reflexion models: bridging
the gap between design and implementation. IEEE Trans. Softw. Eng. 27 (4),
364-380.

OMG, 2012. Object management group (OMG) architecture-driven modernisa-
tion. http://www.omgwiki.org/admtf/doku.php?id=start.

OMG, 2016. Knowledge discovery meta-model (KDM). Available in http://www.
omg.org/technology/kdm/, specification available in http://www.omg.org/
spec/KDM]/.

OMG, 2017. Architecture-driven modernization. http://adm.omg.org/.

Pérez-Castillo, R., de Guzman, L.G.-R., Piattini, M., 2011. Knowledge discovery
metamodel-ISO/IEC 19506: A standard to modernize legacy systems. Comput.
Stand. Interfaces 150 (6), 519-532.

Perez-Castillo, R., Sanchez-Gonzalez, L., Piattini, M., Garcia, F., de Guzman, L.G.R,,
2011. Obtaining thresholds for the effectiveness of business process mining.
In: 5th International Symposium on Empirical Software Engineering and
Measurement, (ESEM). pp. 453-462.

Pruijt, L., Képpe, C., van der Werf,].M., Brinkkemper, S., 2017. The accuracy
of dependency analysis in static architecture compliance checking. Softw. -
Pract. Exp. 47 (2), 273-309.

Roncero, V.G., 2010. Classificacdo Semi-Supervisionada de Textos em Ambientes
Distribuidos (Ph.D. thesis). Ph. D. dissertation, Universidade Federal do Rio
de Janeiro.

San Martin, D., Camargo, V.V., 2021. A domain-specific language to specify
planned architectures of adaptive systems. In: 15th Brazilian Symposium on
Software Components, Architectures, and Reuse. In: SBCARS '21, Association
for Computing Machinery, New York, NY, USA, ISBN: 9781450384193, pp.
41-50.

Sangal, N., Jordan, E. Sinha, V., Jackson, D., 2005. Using dependency models
to manage complex software architecture. In: 20th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, (OOPSLA). pp. 167-176.

Santibafiez, D.S.M., Durelli, R.S., Camargo, V.V., 2015. A combined approach for
concern identification in KDM models. In: 3rd Latin-American Workshop on
Aspect-Oriented Software Development, (la-WASP). p. 10.

Santibanez, D., Durelli, R.S., Marinho, B., Camargo, V.V., 2013. CCKDM - a concern
mining tool for assisting in the architecture-driven modernization process.
In: 3rd Brazilian Conference on Software: Practice and Theory - Session Tool,
(CBSoft). p. 1.

Santos, B.M., Landi, A.S., Santibanez, D.S., Durelli, R.S., Camargo, V.V., 2019a. Eval-
uating the extension mechanisms of the knowledge discovery metamodel
for aspect-oriented modernizations. Journal of Systems and Software (ISSN:
0164-1212) 149, 285-304.

Santos, B.M., de Souza Landi, A., de Guzman, L.G.-R,, Piattini, M., Camargo, V.V,
2019b. Towards a Reference Architecture for ADM-Based Modernization
Tools. In: Proceedings of the XXXIII Brazilian Symposium on Software
Engineering. In: SBES 2019, Association for Computing Machinery, New York,
NY, USA, ISBN: 9781450376518, pp. 114-123.

Schrdder, S., Riebisch, M., 2017. Architecture conformance checking with descrip-
tion logics. In: 11th European Conference on Software Architecture, (ECSA).
pp. 166-172.

Sneed, H.M., 2005. Estimating the costs of a reengineering project. In: 12th
Working Conference on Reverse Engineering (WCRE'05). pp. 9-12.

20

The Journal of Systems & Software 183 (2022) 111116

Stafford, A.LWJ.A.,, 2001. Architecture-level dependence analysis for software
systems. Int.]. Softw. Eng. Knowl. Eng. 11 (4), 431-452.

Terra, R, Valente, M.T., 2009. A dependency constraint language to manage
object-oriented software architectures. Softw. Pract. Exp. 39 (12), 1073-1094.

Terra, R, Valente, M.T., Czarnecki, K. Bigonha, R.S. 2012. Recommending
refactorings to reverse software architecture erosion. In: Proceedings of the
European Conference on Software Maintenance and Reengineering. In: CSMR,
vol. 150, pp. 335-340, (2).

Ulrich, W.M., Newcomb, P., 2010. Information Systems Transformation:
Architecture-Driven Modernization Case Studies. Morgan Kaufmann Publish-
ers Inc..

Wohlin, C., Runeson, P., Hést, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2000.
Experimentation in Software Engineering: an Introduction. Kluwer Academic
Publishers.

Yan, H., Garlan, D., Schmerl, B., Aldrich, J., Kazman, R., 2004. Discotect: a system
for discovering architectures from running systems. In: 26th International
Conference on Software Engineering, (ICSE). pp. 470-479.

André de Souza Landi is a systems analyst at INVILLIA working in a na-
tional project of UOL. He finished his master’s at University of Sdo Carlos -
UFSCar/DC in 2018. Nowadays, he is researching about the topics of Software
Architecture, Modularity, Model-Driven Engineering, Microservices and new
techniques/framework for the Java language.

Daniel San Martin is a Ph.D. Student at Universidade Federal de Sdo Carlos,
Brazil and full-time professor at Exact Sciences Department at Universidad
de los Lagos, Osorno, Chile. He received a B.S. degree in Engineering Science
and Computer Engineering from Universidad Catdlica del Norte, Antofagasta,
Chile and M.Sc. degree in Computer Science from Universidade Federal de
Sdo Carlos, SP, Brazil. He has experience as CISO, PM and Information Analyst
in several public and private organizations. Currently, his research interests
involves Adaptive Systems, Software Architecture and Model Driven Engineering.

Bruno Marinho Santos is graduated in Information Systems at Faculdade Inte-
gral Diferencial (FACID) in 2010 and he obtained his master degree in Computer
Science in Software Engineering area at Federal University of Sdo Carlos (UFSCar)
in 2014. Nowadays, he is a Ph.D. student at UFSCar. He has experience in
Computer Science area, with emphasis in Computation Systems, acting mainly
in the following subjects: Aspect-Oriented Modernization, Architecture-Driven
Modernization, Crosscutting Frameworks, Knowledge Discovery Metamodel, and
metamodel extensions.

Warteruzannan is graduated in Computer Science at Federal University of Goias
and he obtained his master’s degree in Computer Science at Federal University
of Sdo Carlos (UFSCar) in 2020. Currently, he is a Ph.D. student at UFSCar. He
has experience in mobile/web development, machine learning, and software
architecture.

Prof. Dr. Rafael S. Durelli is professor at Computer Science Department of
Federal University of Lavras (UFLA) in Brazil. He finished his Ph.D. at University
of Sdo Paulo USP/ICMC in 2016. He is a member of PqES/DCC (Pesquisa em
Engenharia de Software).

Prof. Dr. Valter Vieira de Camargo is an Associate Professor at Computing
Department of the Federal University of Sdo Carlos (UFSCar) in Brazil. He
has co-authored around 130 research papers, covering the topics of Software
Architecture, Software Modernization, Adaptive Systems, Modularity and Model-
Driven Engineering. He finished his Ph.D. in 2006 and participated as a visiting
researcher at University of Twente in 2013. He has also coordinated the AdvanSE
(Advanced Research on Software Engineering) Group since 2009.

http://refhub.elsevier.com/S0164-1212(21)00213-2/sb32
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb32
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb32
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb32
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb32
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb32
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb32
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb33
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb33
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb33
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb33
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb33
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb35
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb35
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb35
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb36
http://www.omgwiki.org/admtf/doku.php?id=start
http://www.omg.org/technology/kdm/
http://www.omg.org/technology/kdm/
http://www.omg.org/technology/kdm/
http://www.omg.org/spec/KDM/
http://www.omg.org/spec/KDM/
http://www.omg.org/spec/KDM/
http://adm.omg.org/
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb42
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb42
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb42
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb42
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb42
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb43
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb43
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb43
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb43
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb43
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb50
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb50
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb50
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb50
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb50
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb51
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb51
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb51
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb53
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb53
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb53
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00213-2/sb57

	Architectural conformance checking for KDM-represented systems
	Introduction
	Background
	Architectural-conformance checking
	Architecture-driven modernization and knowledge discovery metamodel

	Architectural conformance checking with the Arch-KDM approach
	Planned architecture specification
	Current architecture extraction
	Architectures comparison - detecting violations
	Architectural drifts visualization

	Evaluation
	Evaluation 1: Evaluating Arch-KDM with LabSys
	Methodology of LabSys evaluation

	Evaluation 2: Evaluating ArchKDM with FreeMind
	Methodology of FreeMind evaluation

	Fine-grained analysis of drifts in freemind
	Threats to validity

	Related works
	Works related to DCL-KDM
	Works related to ACC

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

