
An Approach for Creating KDM2PSM Transformation Engines in
ADM Context: The RUTE-K2J Case

Guisella Angulo
UFSCar

São Carlos, Brazil
guisella.armijo@

ufscar.br

Daniel San
Martín
UFSCar

São Carlos, Brazil
daniel.santibanez@

ufscar.br

Bruno Santos
UFSCar

São Carlos, Brazil
bruno.santos@dc.

ufscar.br

Fabiano Cutigi
Ferrari
UFSCar

São Carlos, Brazil
fabiano@dc.ufscar.br

Valter Vieira de
Camargo
UFSCar

São Carlos, Brazil
valter@dc.ufscar.br

ABSTRACT
Architecture-Driven Modernization (ADM) is a type of software
reenginering that employs standard metamodels along the process
and deals with the whole system architecture. The main metamodel
is the Knowledge-Discovery Metamodel (KDM), which is language,
platform independent and it is able to represent several aspects
of a software system. Although there is much research effort in
the reverse engineering phase of ADM, little have been published
around the forward engineering one; mainly on the generation of
Platform-Specific Models (PSM) from KDM. This phase is essential
as it belongs to the final part of the horseshoe cycle, completing
the reengineering process. However, the lack of research and the
absence of tooling support hinders the industrial adoption of ADM.
Therefore, in this paper we propose an approach to support en-
gineers in creating Transformation Engines (TE) from KDM to
any other PSM. This approach was emerged from the experience
in creating a TE called RUTE-K2J, which aims at generating Java
Model from KDM. The transformation rules of RUTE-K2J were
tested considering sets of common code structures that normally
appears when modernizing systems. The test cases have shown
the transformation rules were able to generate correctly 92% of the
source code that was submitted to the transformation.

CCS CONCEPTS
• Software and its engineering→ Software post-development
issues;

KEYWORDS
Model transformation, KDM, PSM, Java Model
ACM Reference Format:
Guisella Angulo, Daniel San Martín, Bruno Santos, Fabiano Cutigi Ferrari,
and Valter Vieira de Camargo. 2018. An Approach for Creating KDM2PSM
Transformation Engines in ADM Context: The RUTE-K2J Case. In XII
Brazilian Symposium on Software Components, Architectures, and Reuse
(SBCARS ’18), September 17–21, 2018, Sao Carlos, Brazil, 10 pages. https:
//doi.org/10.1145/3267183.3267193

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6554-3/18/09. . . $15.00
https://doi.org/10.1145/3267183.3267193

1 INTRODUCTION
Software systems are usually acknowledged as legacy systems when
they exhibit two main characteristics: (i) they have high mainte-
nance costs (effort/time/resources); and (ii) they are still essential to
support current business processes. Clearly, these systems cannot
be discarded since they retain valuable business knowledge that
was incorporated along years of maintenance [6]. For many years,
software reengineering has been sold as a solution to this prob-
lem, since it retains all the knowledge of these systems. However,
a study [22] has shown that more than 50% of the reengineering
projects fail, and one of the main reasons is the lack of standardiza-
tion, which hinders the reusability of solutions and interoperability
among reengineering/modernization tools [12].

In 2003, the Object Management Group (OMG) took its first steps
towards the proposal of Architecture-Driven Modernization (ADM).
The main idea was to define standards for the reengineering pro-
cess in order to promote industry consensus on the modernization
solutions and elevate the success in modernization projects. Many
companies have demonstrated interest in ADM philosophy. In the
ADM Vendor Directory Listing of the ADM website [4], there are
around 30 IT companies listed as OMG partners that have some
kind of interested in the ADM philosophy. Some companies are
specialized in modernizing systems, while others offer this type of
service in their solutions portfolio.

The Knowledge Discovery Metamodel (KDM) is the main ADM
metamodel and its goal is to represent/capture all the system ar-
chitecture independently from platform and language, so it is a
PIM (Platform Independent Model). KDM is expected to be applied
along all modernization phases. More specifically, KDM can be
applied (i) in reverse engineering, in which the legacy system is
parsed and a KDM instance that represents the legacy system is
obtained (another task in this phase is the identification of prob-
lems); (ii) in the restructuring phase, in which the KDM instance
is restructured/refactored to solve the identified problems, and a
new, modernized KDM instance is generated; and (iii) in the for-
ward engineering, in which the modernized KDM is used as input
for re-generating the system, completing the modernization cycle.
Within this last phase, there are still two steps: the generation of a
PSM from the KDM, and the generation of the source code from
the PSM.

In the literature it is possible to find approaches that focus on
the reverse engineering phase using KDM, such as MoDisco [7],

https://doi.org/10.1145/3267183.3267193
https://doi.org/10.1145/3267183.3267193
https://doi.org/10.1145/3267183.3267193

SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil G. Angulo et al.

Gra2Mol [9] and Three-Phase Approach [28]. However, little re-
search has been conducted and published about forward engineer-
ing with KDM. There are some research on the entire moderniza-
tion process, so they have addressed the forward engineering phase
somehow. However, the focus of these initiatives was not on bring-
ing contributions to the forward engineering phase, thus they do
not provide enough details about it [20, 24].

Therefore, in order to fill this research gap, we have developed
an approach for supporting software engineers in the creation of
transformation engines (TE) that transform KDM to any other PSM.
The approach has three phases and is iterative and incremental,
where in each cycle, one transformation rule is developed/evolved.
This approach emerged from the experience in creating a TE called
RUTE-K2J that takes a KDM instance (possibly a modernized one)
as input and automatically generates a Java model from it. Java
model is a well-known PSM (Platform Specific Model) and there
are code generators that take it as input [1, 3]. An important point
here is that RUTE-K2J contributes to the second-to-last step of
ADM horseshoe model (step kdm2psm in Figure 1), opening many
research possibilities for researchers and also companies testing
the promises of ADM regarding reusability, effectiveness, etc.

RUTE-K2J was evaluatedwith the execution of test cases with the
aim of guaranteeing certain level of correctness when performing
the transformations. During the execution of the test cases, we used
the support of Modisco tool to generate a KDM instance (input of
the RUTE-K2J) and the Acceleo tool for generating source code
from the Java Model (output of the RUTE-K2J). The source code
generated by Acceleo allowed us to compare the produced code
with the original code to evaluate the correctness. Our evaluation
showed that 92% of the source code that was submitted to the
transformation was generated correctly.

The remainder of this paper is organized as follows: Section 2
presents necessary background related to ADM and KDM, and
model transformations. Then, in Section 3 presents the guidelines
for creating KDM2PSM transformation engines. In Section 4, we
present the RUTE-K2J Transformation Engine. In Section 5, we
present the validation of RUTE-K2J. In Section 6, we summarize
related work and, finally, in Section 7 we draw some conclusions
and describe plans for future work.

2 BACKGROUND
2.1 ADM & KDM
In 2003, OMG proposed the Architecture-Driven Modernization
(ADM) [9, 12] initiative which follows the MDA principles. ADM
promotes systemmodernization based on the use of models at differ-
ent abstraction levels [26]: CIM, PIM and PSM levels. Furthermore,
it proposes the use of automated transformations to generate new
systems from legacy systems by following a horseshoe process that
is shown in Figure 1.

The ADM modernization cycle has three phases (i): reverse en-
gineering, (ii) restructuring and (iii) forward engineering. In the re-
verse reengineering phase, the knowledge is extracted from source
code and a PSM is generated. The PSM model serves as basis for
generating a PIM called KDM. Then this PIM can serve as basis for
creating a CIM. In reestructuring phase, refactorings are performed
in the legacy instance in order to get an improved version of the

Legacy System Target System

kdm2kdm

Te
ch
n
ic
a
l

D
o
m
a
in

A
p
p
lic
a
ti
o
n

D
o
m
a
in

B
u
si
n
e
ss

D
o
m
a
in

R
e
v
e
rs

e
 E

n
g

in
e
e
ri

n
g

F
o
rw

a
rd

 E
n

g
in

e
e
rin

g

source code
legacy

source code
target

metamodels
other

psm2psm

Refactorings

KDM KDM

PSM

te
xt
2p
sm

psm
2text

ps
m
2k
dm

kdm
2psm

PSM

Figure 1: Horseshoe modernization model

system. Finally, in the forward engineering, the refactored instance
is transformed in source code again.

ADM defines seven standard metamodels, but currently only
three of them are available: Abstract Syntax TreeMetamodel (ASTM),
KDM and Software Metrics Metamodel (SMM) [12].

KDM is an OMG metamodel adopted as ISO/IEC 19506 capable
of representing a complete software system. It can be seen as a
family of metamodels that share the same vocabulary and terminol-
ogy, facilitating the relationships among metaclasses in different
abstraction levels. The specification is organized in four layers:
Infrastructure Layer, Program Elements Layer, Runtime Resource
Layer, and Abstractions Layer where each layer is based on the
previous one. These layers are further organized into packages and
each one corresponds to a certain independent facet of knowledge
about the software, such as the Code View, Structure View, Data
View among others. Current tools that generate KDM instances
consider theProgram Elements Layer, which contains the following
packages: The Code package defines metamodel elements that rep-
resent low-level building blocks of software, such as procedures,
data types, classes, variables, and so on. Among the elements of
the package are: ClassUnit, MethodUnit, StorableUnit, Interface-
Unit, PrimitiveType, among others; the Action package defines
metamodel elements that represent statements as the relationship
endpoints and most low-level KDM relationships.

KDM is designed to enable knowledge-based integration be-
tween tools. More specifically, KDM uses Meta-Object Facility
(MOF) to define an interchange format between tools that work
with existing software as well as an abstract interface (API) for the
next-generation assurance and modernization tools. Therefore, one
can create approaches and tools to: (i) apply refactorings [10], (ii)
perform architecture conformance checking [14], (iii) mine cross-
cutting concerns [21], etc.

2.2 Model Transformations
Model(-to-model) transformation is a core asset in model-driven
engineering (MDE), where models are first-class entities. It is the
process of converting models into other models for the purposes of
supporting rigorous model evolution, verification, refinement, and
code generation [11]. Given a source metamodel MMA, a source
modelMA (as an instance ofMMA) and a target metamodelMMB ,
define and execute a transformation TAB which generates a model

RUTE: A Contribution to the Forward Engineering Phase of ADM SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil

MB that is an instance ofMMB and suitably corresponds toMA. The
transformation TAB conforms to its metamodelMMT , but involves
also the metamodelsMMA andMMB to define the transformation
rules. All the metamodels finally conform to the meta-metamodel
MOF at model layer M3. This way, a transformation can have
multiple source models, and produces multiple target models.

Model transformation can be classified from different perspec-
tives. According to the metamodels, to which the source and target
models conform to, two kinds of transformation can be distin-
guished: exogenous and endogenous. An endogenous transformation,
also called an inplace transformation, translates a source model into
a target model that conforms to the source model’s metamodel,
e.g., a refactoring of a KDM instance. In contrast, an exogenous
transformation, or out-place transformation, uses different source
and target metamodels, e.g. transforming a KDM instance to JAVA
instance model [15]. According to the transformation directions,
a transformation can be unidirectional or bidirectional. An unidi-
rectional model transformation has only one execution direction,
that is it always modifies the target model according to the source
model. In case of bidirectional transformation, the source model
may be changed along with the target model if the transformation
is executed in the direction of target-of-source.

3 APPROACH FOR CREATING KDM2PSM
TRANSFORMATION ENGINES

This section presents our approach for creating transformation
engines from KDM to PSMs. The main goal of the approach is
to support the elaboration of mappings between the KDM and a
particular PSM by comparing instances of these metamodels. The
result is used to develop the transformation rules that make up the
transformation engine.

The approach consists in one activity called Choosing PSM meta-
model and reverse-engineering Tool and three phases, as depicted in
Figure 2. The goal of the activity is twofold; the first one is to define
which PSM (Java Model, C# model, Service-Oriented Model, etc)
will be used as the target metamodel because the forward trans-
formation will generate instances of this PSM. The second one is
to choose a reverse-engineering tool/parser that generates a PSM
from source code. The output of this activity are the PSM and the
tool for reverse-engineering.

The Phase I called Preparing Initial Artifacts has three activities
with the purpose of generating the PSM and KDM instance artifacts
used in the next phases. The Phase II called Developing KDM2PSM
transformation engine has three activities with the purpose of de-
veloping the transformation rules that conform the transformation
engine. Finally, the Phase III called Validating Transformation Rule
has two activities with the purpose of testing the transformation
rule and verify the completeness of the resulting PSM Model.

Our process is iterative and incremental because in each phase
the activities could be repeated several times until there is no lan-
guage statement to be created or the software engineer stop the
process. Note that every time a cycle is completed, a transformation
rule is created.

The activities in each phase are shown in Figure 3 and described
below.

Phase I: Preparing Initial Artifacts.

This first phase aims to generate the artifacts used in the next
phases.

The first activity: Defining the Code Snippet to be Rep-
resented by the Models. The goal is to choose the source code
structure that a rule will be written for. For example, if an engineer
choose the source code element while then the resulting transfor-
mation rule of this iteration will recognize the representation of
the while in KDM and will generate it in the target PSM. This activ-
ity depends on the purpose of the code generation. Sometimes it
will be necessary to generate complete source codes that take into
account method bodies, types and relationships. In other cases, it
may be only necessary to generate just method signatures, classes,
attributes and parameters. After that, the modernization engineer
must implement or obtain a simple piece of code of the structure.
This will serve as an input for the next activities. The output of this
activity is a piece of source code implemented or obtained by the
modernization engineer.

The second activity: Generating the Sample PSM. The goal
is the generation of the PSM instance from the piece of source code
of the previous activity. The PSM is an important artifact in the
overall process because two reasons. Firstly, in the activity 4 it helps
in the identification of the equivalent metaclasses between both
metamodels. Secondly, in the activity 7 it is used as an oracle to
verify the completeness of the PSM output. Thus, the modernization
engineer uses the Code2PSM tool and provides as an input the piece
of source code. The result of this activity is the PSM instance, called
from now as the Oracle PSM.

The third activity: Generating the KDM instance. The goal
is the generation of the KDM instance. This instance assists the
software engineer in the identification of the metaclasses that are
equivalent between the metamodels and it provides the input ele-
ments for testing the rule in the activity 6. To create the artifact, the
modernization engineer uses a modernization tool that generates
the KDM instance (PIM) from source code. In the literature, there
are some tools that can automate this process such as: Bruneliere et
al [7] and the tool MoDisco for generates KDM instance from Java
source code; Feliu Trias et al [23], they provide a tool for obtain
the KDM instance from PHP source code; Christian Wulf et al [28],
they present an approach to transform C# programs to KDM and
the commercial software BLUAGE [5] can transform Cobol code to
KDM.

Phase II: Developing KDM2PSM transformation engine. It
is the main phase and its goal is the development of the rule re-
sponsible for transforming the KDM instance that represents the
chosen source code structure in a PSM instance representing the
same structure.

The fourth activity: Creating mapping KDM - PSM. This
activity has as goal to establish the mapping between the meta-
classes of the metamodels. To this end, the modernization engineer
has to perform a comparative analysis between the KDM instance,
output of the activity 3, and the Sample PSM, output of the activity
2. This comparison between the models (XMI files) helps to identify
the metaclasses and its attributes used for represent the structure
chosen. For example Figure 4, shown the comparison between the
KDM instance (A) with the PSM model (B) for the structure while.
The equivalence elements are denoted with the numbers (1), (2) and
(3). The result of this activity is the artifact called the KDM-PSM

SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil G. Angulo et al.

Figure 2: Phases of the Approach for Creating KDM2PSM Transformation Engine

Figure 3: Phases and Activities of the Approach for Creating KDM2PSM Transformation Engine

model mapping, which record the equivalence between PSM-to-
KDM elements. This artifact is actively consulting and updating in
each iteration.

A

B

Figure 4: Comparison between KDM and PSM model

Thefifth activity: Elaborating the transformation rule. The
goal of this activity is to develop the transformation rule to trans-
form from KDM instance to PSM instance, preserving the chosen
source code structure embodied in the source model. Firstly, the
modernization engineer using the the KDM-Java model mapping,
the metamodel documentation and the transformation tool doc-
umentation has to establish the source KDM metaclass and the
target PSM metaclass of the transformation, including filters or
conditions for delimit the source. Secondly, develop the rule body,
he must place on the left side each attribute of the PSM metaclass
assigning the correspondence KDMmetaclass attribute, on the right
side, according to the mapping in the the KDM-PSM model mapping.
The modernization engineer must know the syntax of the trans-
formation language to perform this activity. Finally, one or many
functions must be implemented to complete the information that

RUTE: A Contribution to the Forward Engineering Phase of ADM SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil

cannot be obtain directly from the source KDM instance. Due to
the low-level abstraction of the PSM model, it needs more specific
information than is provided by the KDM instance.

Phase III: Validating Transformation Rule. This phase has
as goal testing the developed transformation rule and verify the
completeness of the PSM output.

The sixth activity: Testing the Transformation Rule. The
goal is to test the transformation rule developed to verify that they
are correct. In order to achieve this goal, themodernization engineer
has to execute the transformation rule using the transformation
tool kit and configure the KDM instance as input. The output of
this activity is the PSM instance called Output PSM.

The seventh activity: Verifying completeness of PSM out-
put. The goal of this activity is to verify the completeness of the
output PSM generated in the last step, when comparing with the
sample PSM that was generated in the activity 2. In order to achieve
this goal, the modernization engineer has to compare the both
model looking for differences in the structure; it is a manual work
that can be facilitated with some free tool for compares XMI files.
The output of this activity is a list of differences between the models.
When differences are found, they must be corrected by returning
to activity 6.

4 RUTE-K2J: THE TRANSFORMATION
ENGINE

In the literature, several reengineering approaches describe how
to transform a KDM instance into a particular technology using
specific components and mapping. For example, from KDM-Extend
to SQL-DML [17], from KDM to KD model [25] or from KDM to
Metrics Model [8]. These works transform KDM instances in other
metamodel instances in conformance with proprietary metamodels,
hindering the reuse in other similar projects. Moreover, few works
complete all the modernization process using the KDM instance
in the forward transformation stage. For example, from KDM to
ASTM[16], from KDM to Android Model [18] or from KDM to
RIA-extended MDWE [20]. These works not make available the
developed transformation rules for analysis, reuse or improvement
of them.

There are a gap to transform KDM instances to other available
and knowing model to complete the forward engineering stage
in ADM Modernization Process. To close this gap, we propose
the Rule-based Transformation Engine KDM2JAVA (RUTE-K2J) that
has as mainly objective to facilitate the transformation from KDM
instance to Java Model and use it on modernization use cases. The
RUTE-K2J benefits are the following:

• Facilitating the exogenous transformation from KDM instance
to Java model. It is valuable to note, the input KDM instance
generated only supports the Code and part of the Action package;

• Allowing the use in modernization use cases. RUTE-K2J collabo-
rates with the Forward Engineering stage of the ADM horseshoe
model;

• Allowing the use of the Java Model J2SE5 (output of the transfor-
mation) that is a reflection of the Java language;

• Using the Java metamodel that is defined in the widely used
metalanguage Ecore, which allows the modification, extension or

reuse by metamodeling tools. This metamodel is available in the
source of plug-in org.eclipse.gmt.modisco.java;

• Allowing the analyses, reuses and improvements because is a
Open source project.
RUTE-K2J was developed using the following technologies: i)

the ATL transformation language [2]; ii) the OCL (Object Restric-
tion Language) norm for data types and declarative expressions; iii)
Eclipse Modeling Framework (EMF); iv) Modisco and the discover-
ers that allow the generation of the Java Model and KDM from the
source code; v) Discover-Advanse, which includes improvements
made in the ATL rules to generate a refined KDM instance.

This first version of the RUTE-K2J tool is composed for 55 trans-
formation rules, 28 Helpers and 10 Lazy rules. The Rute artifacts
are described below.

i) The KDM-PSM model mapping. This artifact shows the map-
ping between the equivalent metaclasses of KDM and Java model.
The mapping guide the developing of the forward transformation
rules because identify the input KDM metaclass for generate the
correct output Java metaclass instance. Table 1 shows part of KDM-
PSM model mapping artifact, the first and second column refers
to the KDM metaclass and the condition used as filter, the third
column refers to the Java classes. Observing the table, we can re-
alize that the Action Element KDM metaclass can be transformed
into several Java Metaclasses (IfStatement, InfixExpression, Switch-
Statement, etc.), for this reason, we must use as a condition to limit
the input source the Kind attribute of KDM metaclass. This arti-
fact is important because the KDM has many elements where the
distinction is in the attribute called kind, with no value in some
enumeration of elements. The complete artifact can be access in
the following URL: https://goo.gl/xnfS6p.

Table 1: Partial KDM2Java Model Mappings
KDM Instance JAVA Model

Metaclass Filter Metaclass
CodeModel name=’Nome_projeto’ ModelCodeModel name=’External’
Package - Package
ClassUnit name <> ’Anonymous type’ ClassDeclaration

name = ’Anonymous type’ AnonymousClassDeclaration
MethodUnit kind = constructor ConstructorDeclaration

kind = method MethodDeclaration
StorableUnit kind <> local FieldDeclaration

kind=local VariableDeclarationFragment
BlockUnit - Block

ActionElement kind = ’if’ IfStatement
kind =’infix expression’ InfixExpression
kind=’postfix expression’ PostfixExpression

kind=’switch’ SwitchStatement
kind=’while’ WhileStatement

kind=’method invocation’ MethodInvocation
kind=’class instance creation’ ClassInstanceCreation

kind=’return’ ReturnStatement

ii) The KDM2JAVA Transformation Rules inventory artifact shows
the inventory of the developed transformation rules ATL. The trans-
formation rules compose the core of the RUTE-K2J tool and allow
the transformation of KDM instances to Java Models preserving
the information during the process. Table 2 shows part of the
KDM2JAVA Transformation Rules inventory artifact. We can ob-
serve that the name of the rule evidence the metaclass of origin
and destination in the transformation. For example, the rule Code-
ModelToJavaModel has as objective transform the KDM metaclass

https://goo.gl/xnfS6p

SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil G. Angulo et al.

Table 2: Partial Transformation Rules
No Rule name and its purpose
1 CodeModelToJavaModel:

Main rule for structuring the Java Model from the KDM instance
2 PackageToJavaPackage:

Transform the Package metaclass of the KDM to Package metaclasses of the
Java metamodel

3 ClassUnitToClassDeclaration:
Transform the ClassUni metaclass of the KDM to the ClassDeclaration meta-
class of the Java metamodel

4 ActionElementToInfixExpression:
Transform the ActionElement metaclass of the infix expression type of the
KDM instance to the InfixExpression metaclass of the Java Model

5 ActionElementToIfStatement:
Transform the ActionElement metaclass of the prefix expression type of the
KDM instance to the PrefixExpression metaclass of the Java Model

6 ActionElementToForStatement:
Transform the ActionElement metaclass of type for from the KDM instance
to the ForStatement metaclass of the Java Model

CodeModel to the Java model metaclass Model. This rule is the prin-
cipal for structuring the model and articulate the other rules. The
complete artifact with 55 Transformation Rules inventory can be
access in the following URL: https://goo.gl/CZQXM5.

Table 3: Partial Helpers
No Helper Name and purpose
1 getOrphanTypes: Helper that returns a sequence of datatypes elements
2 getCompilationUnit: Helper that returns the inventory of the physical arti-

facts of the system
3 getParametersMethod: Helper to get the parameter sequence of the Method
4 getReturns: Helper to get the sequence of return elements of the Method
5 checkElementoExternal: Helper recursive to verify if the element belongs to

the External Model in the KDM instance in order to put the attribute ’proxy
= true’ in the Java Model

Table 4: Partial Lazy Rules
No Lazy Rule Name and Purpose
1 setOrphanTypes: Defines the attributes of the orphanTypes metaclass of the

Java Model
2 setCompilationUnit: Defines the attributes of the CompilationUnit metaclass

of the Java Model
3 SetParametros: Defines the parameters attributes of the method in the Java

Model
4 SetTypeParametrosRetorno: Defines the data type of the return parameter

of the Method

iii) The ATL Helper Inventory artifact. In the ATL context, the
helpers can be viewed as the equivalent to methods. They can be
called from different points of an ATL transformation by rules or by
other Helpers making possible define factorized ATL code, calculate
information, etc. Table 3 shows part of the developed Helpers. Ob-
serving the table, we can realize the Helper getOrphanTypes helps
us to obtain a sequence of datatypes elements presents in the source
Model. The complete artifact with 28 ATL Helper Inventory can be
access in the following URL: https://goo.gl/HaCYYb.

iv) The Lazy rules inventory artifact. In our project, the Lazy
rules is used in the characterization of collections elements, it must
be explicitly invoked by the transformation rule. Table 4 show part
of the lazy rules. Observing the table, we can realize the lazy rule
setOrphanTypes helps us assign values for each attribute returned by
the getOrphanTypesHelper. The complete artifact with 10 Lazy Rules
Inventory can be access in the following URL: https://goo.gl/Y45cff.

4.1 Problems Faced
During the process of construction of the RUTE-K2J tool, i. e., the
establishment of the mapping between the equivalent elements of
the metamodels and the development of the transformation rules,
we face several difficulties. The main ones are:

Abstraction level: The target Java model due to the lower level
of abstraction has metaclasses that need more information than the
one provided by KDM instances. For example, the CompilationUnit
(Java metaclass) has the atributes: name, originalFilePath, types and
imports. On other hand, the metaclass equivalent the InventoryItem
(KDM metaclass) only has the attribute name and originalFilePath.
The missing information was obtained developing Helpers ATL
when was possible.

Order of elements: KDM has metaclasses with attributes that do
not have an explicit assignment order. For example, the ActionEle-
ment metaclass has many codeElements attributes with no label
indicating the assignment order, we deduce that this is according of
the order of appearance. While in the Java model, the metaclasses
present attributes with names that indicates the right assignment
order. For example, the RightOperand and leftOperand attributes of
the InfixExpression metaclass.

External Model: In a KDM instance has a model called External
where stores the references of the external classes (imported classes).
However, in the method body, expressions such declaration of local
variables with initial values assignment have these values placed
in this model. The combination of these elements in the external
model difficult: (i) Retrieving the assigned value and (ii) recognizing
and transforming each element in the External Model.

5 VALIDATION SETUP
We have conducted an evaluation of the Transformation Engine
whose goal was to guarantee certain level of correctness when
performing the transformations. More specifically, we intended to
verify if the developed rules are correct and if the combination of
them, in an aleatory way, result in correct transformations. The
main goal is raising evidences of quality in the transformation
rules so modernization engineers can use it in their projects. In
order to conduct the evaluation, we elaborated a testing strategy
for executing each of the 55 transformation rules at least one time.

5.1 Scoping
Defining the scope of an experiment comes down to setting its goals.
We used the organization proposed by the Goal/Question/Metric
(GQM) [27] template to do so. According to this goal definition
template,the scope of our study can be summarized as follows.

Analyze whether all the RUTE transformation rules works as
expected

for the purpose of evaluation
with respect to correctness of all transformations rules1
from the point of view of the researcher
in the context of software engineer, i.e., engineer transforming

KDM instance to Java Model.

1Herein, a transformation rule is correct when it successfully transform a source
element into an expected (oracle) element

https://goo.gl/CZQXM5
https://goo.gl/HaCYYb
 https://goo.gl/Y45cff

RUTE: A Contribution to the Forward Engineering Phase of ADM SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil

5.2 Sample Selection
We focused our analysis on open source projects so that our study
could be easily replicated and extended. Given that our sample was
randomly selected from open sources “repositories”, we tried to
include a wide range of source code that differ in size and com-
plexity. Therefore, we have selected and downloaded some Java
repositories ordered by popularity in GitHub.

We adhered to the following criteria in constructing our sample:

• Open-source projects: we randomly selected open-source program
hosted in GitHub repositories. We followed the guidelines pro-
posed by Kalliamvakou et al. [13] during the construction of our
sample.

• Java: has at least 90% of the code repository effectively written
in Java.

5.3 Operation
In this section we describe the experiment operation, which was
divided into two parts: preparation and execution.

Preparation: RUTE tool is composed of 52 standard and 3 ab-
stract transformation rules. Each rule was individually developed
with a specific objective, i.e., to generate control structures If, For,
creation of methods, attributes of the Classes, initialization of vari-
ables, etc. However, these rules show dependence on each other to
generate a complete Java source code. In this context, we developed
a strategy to validate the fulfillment of the transformation rule
objective and execute each transformation rule at least once in the
test cases. The KDM instance generated from random and complete
Java program comprises the test case. We define the following steps
for elaborate the test cases.

• Creating the Rule Matrix: Elaborating a matrix with the trans-
formation rules, identifying as follows: first, the identification of
the main rules must be marked with “*”. The main rules are re-
sponsible for the generation of the basic structure of Java Model.
Second, the optional dependence on other rules that must be
marked with “**”. Notice that we call this as optional dependence
on rules because there are many possible combinations between
the rules for generate structures. We only marked dependence
based on the examples used in the process of creating the trans-
formation rules. Finally, the indirect dependence on other rules
must be market with ID-(Rule);

• Identifying Leaf Rules: In the Rule Matrix, we identify the rules
that are not required by other rules to complete their execution.
This means that no other rules depend on them. However, these
rules may depend on several others. In order to manage that, we
count the number of marks in each columns and select those
with the value ‘’0”. If we compare with a graph structure, the rule
would be the leaf;

• Prioritization Leaf Rules: For each identified Leaf Rule, we count
the number of marks in each row, so that result represents the
number of dependencies on the other rules. After that, we make
a prioritization considering the highest to lowest number of
dependencies. We adopted as a criterion to elaborate the test
cases considering leaf rules and their prioritization because each
of them will guarantee the execution of the greatest possible
number of rules;

• Test case: We search Java source code available on the web for
covering the prioritized leaf rules. We opted for combining them
in order to generate more complete java programs. Even so, it will
not always be possible for a single program to cover all the leaf
rules, i.e., all the rules which the leaf rule depends on. However,
we must guarantee that this uncovered rule is executed at least
once in some other leaf.

Execution: After identify the strategy for evaluate RUTE, the
concrete actions are the following:

• Creating the Rule Matrix: To elaborate the matrix, we considered
the 52 standard transformation rules, which are placed horizon-
tally and vertically. Then, taking the first rule in the vertical
are identified the rules in the horizontal of which it dependence
on. We iterate with the following rules in the vertical until com-
pleting the 52 rules. Table 5 shows part of the Rule Matrix, we
can observe that rule R30 dependence on R01 (JavaModel), R05
(JavaPackage), R11 (ClassDeclaration), R15 (MethodDeclaration)
and R16 (BlockUnit) marked with "*", rules responsible for the
creation of the Java model structure. Moreover, R30 optionally
dependence on R14 (Constructor), R18 (ReturnStatement) or R21
(SwitchStatement) marked with "**", i.e., it depends of the type of
structure that will generate. Finally, R30 indirectly dependence on
R22 (BreakStatement) and R23 (SwitchCase) marked with ID-R21.
This means, if R30 dependence on R21 it would indirectly de-
pend on the execution of R22 and R23. R21, R22 and R23 together
compose the SwithStatement structure.

• Identifying Leaf Rules: We count the occurrences in the matrix
columns and identify the rules with result value equal to "0". This
value indicates that no other rule depends on the rule in analyze.
In Table 5 we realize that the R13 (FieldDeclaration) is a Leaf
Rule.

• Prioritization Leaf Rules: We reduce the matrix considering as
columns the identified Leaf rules. Then, we count the occurrences
in the rows, ordering them from highest to lowest. Higher values
tell us that this leaf rule can execute a greater number of rules,
helping us to exercise a large number of transformation rules
with few testing scenarios. Table 6 shows part of the Leaf Rules,
we can observe the total number of occurrences for each rule.
The R47 has 25 occurrences, this means that the programs where
we use this rule could exercise up 25 rules of the set of 52.

• Test case: With the of the prioritization, we can elaborate and
execute each test cases:
Test Case elaboration: We combine leaf rules for each test case
to use complete Java programs. This programs are chosen trying
to cover all the Leaf rules and the rules that these depends on.
In Table 7, we can observe the combination of Leaf rule for each
test case. For example, the Test Case I exercises the Leaf rules
R47 (10 Rules), R30 (7 rules) and R51 (2 rules) covering 19 rules
(36.54%) of the set of 52. The Test Case II covers more eight new
rules not executed before.
Test Case execution: With the Java program chosen and with
the help of the tool Discover-Advanse, we generated the KDM
instance for each program. After that, we execute the tool RUTE-
K2J configuring as input each KDM instance and obtaining as
output the Java Model (XMI File). Next, with the aim to verify
the completeness of the model, we use the Acceleo Plug-in to

SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil G. Angulo et al.

Table 5: Rules Matrix
Rule R01 R05 R11 R13 R14 R15 R16 R18 R20 R21 R22 R23 ...

R13 TrasformStorableUnitToFieldDeclaration * * * - - - - - - - - ...
R29 TransformWritesToSingleVariableAccess * * * - ** * * - - - - - ...
R30 TransformReadsToSingleVariableAccess * * * - ** * * ** - ** ID-R21 ID-R21 ...

...
Occurrences 51 47 42 0 34 38 38 5 4 8 7 7 ...

Table 6: Leaf Rule Prioritization
Rule R01 R05 R11 R13 R14 R15 R16 R18 R20 R21 R22 R23 ... Occurrences

R47 TransformValueToNumberLiteral * * * - - - - - - - - ... 25
R48 TransformValueToStringLiteral * * * - ** * * - - - - - ... 22
R50 TransformValueToBooleanLiteral * * * - ** * * ** - ** ID-R21 ID-R21 ... 22

...

Table 7: Test Cases
Test Case R47 R30 R48 R50 R49 R31 R51 R52 R46 R10 R13 Coverage(1) P% (2)

I 10 7 2 19 36.54
II 3 5 8 15.38
III 2 3 2 7 13.46
IV 2 2 1 5 9.62
V 2 2 4 7.69
VI 5 5 9.62
VII 3 1 4 7.69

generate Java source code from the Output Java model. Finally,
the free tool Pretty Diff helps us to compare the original Java
code and the Java Code generate by Acceleo. The result of this
comparison is the different lines among source codes.

5.4 Results
Table 8 shows the seven test cases. Note that the first column shows
the number of the Test case. The second and third column show
the name of the source code project and the number of lines of
code. The fourth column indicates the number of lines of code with
differences. The fifth and sixth columns show the line of code with
difference and the original. Finally, the seventh column details the
difference between the fifth and sixth columns.

As result of the test cases execution, considering the 217 lines of
code of the all programs chosen: 201 lines were generated correctly
and 16 lines presented differences, i.e., 92 % of the code was gener-
ated successfully. The lines of code generated with differences are
analyzed as follows:

• For all test cases, the reserved word Static is not being generated.
Keeping track of the data preservation during the transforma-
tions, we find that this data is not brought by the KDM input
model generated.

• Test Case I. Another difference was the order of the elements
in the conditional part of the if structure. This is one of the
main problems faced, the elements (instructions, assignments,
etc.) in the structure (if, for, While, etc.) do not have a concrete
specification in the order of apparition in KDM instance.

• Test case III. The System.in parameter for the creation of the
Scaner class is absent. The lack of information in KDM instance
was detected during the process of elaboration of the transfor-
mation rules.

• Test Case V. The resulting code is showing, after the creation of
an anonymous class, an unnecessary parenthesis "()". This is an
error in the transformation rule when working together with the
other rules. This error must be revised and corrected.

• Test case VI. In the creation of a structure Array[] the element "[]"
is absent. The same reason of the cases before, the input model
KDM do not have this information.

• Test case VII. It is missing a transformation rule for the comments,
it will be developed for the next version of the tool. In addition,
in the multiplication statement (2 * b) the order of the elements
is incorrect, it is the same problem of the Test Case I. Moreover,
it presents a lack of separation in the expression "+++ i", here
the problem is in the tool Acceleo and not in the transformation
rules

As result of the evaluation, 92% of the code was successfully gener-
ated. This shows that the transformation rules, despite the limita-
tions in the input model KDM, generate a Java model that preserve
the information embodied in the source code.

5.5 Threats to Validity
The small number of source code examples we collected. How-
ever, when we are looking for source code samples, we tried to get
representative samples, that is, those that presented common and
usual source code structures;

All the combinations among rules were not exercised. Al-
though we have exercised the rules in many combinations in each
test case, many were left over. This is a threat we intend to solve in
a future work.

The Discover-Advanse tool used for the generation of the
KDM instance. Although the tool includes the improvements devel-
oped, it still does not generate a complete KDM instance.

6 RELATEDWORKS
Most related works shown here are concentrate on showing the
entire modernization process, evidencing some parts of the process.
Next, we present some works that present transformations from
KDM to other metamodels. However, several details of the trans-
formations or the process they have used for elaborating the rules
are not clear or shown in the paper.

RUTE: A Contribution to the Forward Engineering Phase of ADM SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil

Table 8: Rute-K2J Evaluation
No File name LOC LOC-D Original Source Code Acceleo Source Code Observation

I ControlFlowStatements.java 61 4

public static int getMonthNumber public int getMonthNumber Reserved word Static is absent
public static void main(. . . public void main(. . . Reserved word Static is absent
if (month == null) if (null == month) Wrong order of the elements
if (returnedMonthNumber == 0) if (0 == returnedMonthNumber) Wrong order of the elements

II TestArray.java 20 1 public static void main(. . . public void main(. . . Reserved word Static is absent

III GetAge.java 21 2 public static void main(. . . public void main(. . . Reserved word Static is absent
sc = new Scanner(System.in) sc = new Scanner(); Parameter is absent

IV
TestBikes.java 11 1 public static void main(. . . public void main(. . . Reserved word Static is absent
MountainBike.java 20 0 - - -
Bicycle.java 28 0 - - -

V AnonymousDemo.java 13 2 public static void main(. . . public void main(. . . Reserved word Static is absent
} }(); Unnecessary parentheses

Age.java 6 0 - - -

VI ArrayListTOArray.java 18 2 public static void main(. . . public void main(. . . Reserved word Static is absent
String array[] = new . . . String array = new . . . Missing brackets in array criation.

VII Test.java 19 4

//Java program to . . . - Missing comment
public static void main(. . . public void main(. . . Reserved word Static is absent
b = (byte)(b * 2); b = (byte)(2 * b); Wrong order of the elements
println("Prefix = " + ++i); println("Prefix = " +++i); Missing space

Total 217 16

Pérez-Castillo et. al [17] proposed a modernization process called
Data Contextualization technique that takes as an input a legacy
system with embedded SQL queries and generates as an output a
model with the database schema. In the first step several SQL queries
embedded in the source codewritten in Java programming language
are represented in a extended KDM instance for supporting SQL
artifacts, such as database model and SQL schemes. A static analysis
is performed in the KDM instance in order to recognize SQL queries
and generate a SQL statement model which is an instance of SQL-92
metamodel. Finally, several QVT rules generate the output of the
process because they transform the SQL statement model into a
Database schema model.

As the authors propose an entire modernization cycle, possibly
they have developed a TE that takes as input KDM and generates
a SQL Statement Model, which is a PSM. However, they do not
provide details about the effort of this phase.

Rodríguez-Echeverría et al. [20] proposed an outline framework
for the systematic process for Web Applications (WA) to Rich Inter-
net Application (RIA) modernization. The modernization process
follows the ADM approach and it is composed of 5 phases: (i) infor-
mation extraction; (ii) the information extracted is stored in a KDM
instance and refined with dynamic information; (iii) model refine-
ment to RIA patterns, the KDM instance is improvement by finding
expressions of RIA characteristics; (iv) model transformation, the
KDM instance is now refined in to a RIA-extended Model-Driven
Web Engineering (MDWE); and finally in (v) Converting the model
instance in an executable web application.

As this approach is a proposal neither the transformations is
implemented nor the strategy is deeply discussed. The authors
argue that the possible solutions would be reuse some existing
techniques and tools, so the whole approach does not propose a
methodology to the M2M transformation.

Feliu Trias Nicolau [24] has proposed ADMigraCMS that defines
guidelines to migrate CMS-based (CSM - Content Management
Systems) Web applications to other CMS platforms supported by a
toolkit. It is composed of three reengineering stages defined in the
ADM horseshoe process and structured in four different modelling
levels. The ADMigraCMS tool transforms automatically the tran-
sition between the levels, i.e., from PHP code-to-PHP_Model(L0),

from PHP_model(L0)-to-ASTM_Model (L1), from ASTM_Model
(L1)-to-KDM (L2) and from KDM (L2)-To-CMS(L3) and the inverse
transformations in the forward engineering stage.

The ADMigraCMS tool has a complete level of automation and
completes the entire Modernization cycle for PHP-implemented
CMSs. Although the author has shown the mapping between the
elements of different abstraction levels, it is not clear how the
development of the transformation rules were performed because
the implementation is not presented.

Pérez-Castillo et. al [19] proposed a declarative model transfor-
mation in order to transform KDM instances into BPMN models.
The first step was to identify specific structures of meta-classes in
the KDM instances and establishes other specific structures of busi-
ness meta-classes in output models. The patterns are built by taking
into account business patterns that are usually used by business ex-
perts for modeling business processes. The patterns also add those
structures of source code elements (defined through KDM elements)
that originate the specific business structures in BPMNmodels. The
second step was to implement the model transformations by means
of QVT-relation declarative language.

The authors do not detail how was the process to create the
patterns and if their approach can be reused for other types of
transformation. They paid more attention in the QVT-r code that
shows the implementation of the patterns.

7 CONCLUSION
In this paper, we presented the approach to create KDM2PSMs trans-
formation engine that helps modernization engineers to complete
the forward engineering stage of ADM horseshoe model.

Our approach is characterized by three main features: (i) it uses
an iterative and incremental process to develop the forward transfor-
mation rules KDM2PSM; (ii) it relies on analyses and comparisons
of PSM instances as the main source of knowledge to develop the
rules; (iii) it uses the KDM-Java model mapping as the main artifact,
which is the step that establishes the mapping between the KDM
and PSM metamodel elements.

The generic approach to create KDM2PSM transformation en-
gines allow us the construction of the RUTE-K2J tool. The tool is

SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil G. Angulo et al.

composed of 55 transformation rules, 28 helpers and 10 lazy rules
developed with ATL, and provides an instrument to transform the
KDM instance to Java Model. It can be access in the folowing URL:
https://github.com/Advanse-Lab/RUTE-K2J

To demonstrate the correctness of our tool, we elaborated seven
test cases that are result of a detailed evaluation process application,
with the strategy of executing each transformation rule at least
once. Our evaluation showed that the 92% of the source code was
preserved and the information lost is mainly because the KDM
input did not carried complete information along the reengineering
process.

In the future, we plan to automate the approach by building a
support tool for making the mapping between different metamod-
els and generating, semi-automatically, the transformation rules.
Furthermore, we plan to improve the reverse PSM2KDM transfor-
mation engine offered by Modisco tool aiming to guaranteeing a
complete KDM instance generation that preserves the information
required for the use of our approach.

ACKNOWLEDGEMENT
We would like to thank the financial support provided by FAPESP,
SP, Brazil, process number (2016/03104-0), CAPES and Becas Chile
(CONICYT) Scholarship.

REFERENCES
[1] 2006. Eclipse Acceleo Project. http://www.eclipse.org/acceleo/. (2006). Accessed:

2018-04-28.
[2] 2006. Eclipse ATL Project. https://projects.eclipse.org/projects/modeling.mmt.atl.

(2006). Accessed: 2017-11-01.
[3] 2013. Eclipse Epsilon Project. http://www.eclipse.org/epsilon/. (2013). Accessed:

2018-04-28.
[4] 2018. ADMVendor Directory Listing. https://www.omg.org/adm/vendor/list.htm.

(2018). Accessed: 2018-04-28.
[5] Franck Barbier, Gaëtan Deltombe, Olivier Parisy, and Kamal Youbi. 2011. Model

driven reverse engineering: Increasing legacy technology independence. In Second
India Workshop on Reverse Engineering, Vol. 125. 126–139.

[6] Keith Bennett. 1995. Legacy Systems: Coping with Success. IEEE Softw. 12, 1 (Jan.
1995), 19–23. https://doi.org/10.1109/52.363157

[7] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. 2010.
MoDisco: a generic and extensible framework for model driven reverse engi-
neering. In Proceedings of the IEEE/ACM international conference on Automated
software engineering. ACM, 173–174.

[8] Javier Canovas and Jesus Molina. 2010. An architecture-driven modernization
tool for calculating metrics. IEEE software 27, 4 (2010), 37–43.

[9] Javier Luis Cánovas Izquierdo and Jesús García Molina. 2009. A Domain Specific
Language for Extracting Models in Software Modernization. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 82–97. https://doi.org/10.1007/978-3-642-02674-4_7

[10] Rafael S Durelli, Daniel SM Santibáñez, Márcio E Delamaro, and Valter Vieira
de Camargo. 2014. Towards a refactoring catalogue for knowledge discovery
metamodel. In Information Reuse and Integration (IRI), 2014 IEEE 15th International
Conference on. IEEE, 569–576.

[11] Robert France and Bernhard Rumpe. 2007. Model-driven Development of
Complex Software: A Research Roadmap. In 2007 Future of Software Engineer-
ing (FOSE ’07). IEEE Computer Society, Washington, DC, USA, 37–54. https:
//doi.org/10.1109/FOSE.2007.14

[12] Object Management Group. 2009. Architecture-Driven Modernization Stan-
dards Roadmap. https://www.omg.org/adm/ADMTF%20Roadmap.pdf. (2009).
Accessed: 2018-01-15.

[13] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In Proceedings of the 11th Working Conference on Mining Software Repositoriesa
(MSR). ACM, 92–101.

[14] André de Souza Landi, Fernando Chagas, Bruno Marinho Santos, Renato Silva
Costa, Rafael Durelli, Ricardo Terra, and Valter Viera de Camargo. 2017. Support-
ing the Specification and Serialization of Planned Architectures in Architecture-
Driven Modernization Context. In 2017 IEEE 41st Annual Computer Software and
Applications Conference (COMPSAC). IEEE, 327–336.

[15] Tom Mens and Pieter Van Gorp. 2006. A Taxonomy of Model Transformation.
Electronic Notes in Theoretical Computer Science 152, Supplement C (2006), 125 –
142. https://doi.org/10.1016/j.entcs.2005.10.021 Proceedings of the International
Workshop on Graph and Model Transformation (GraMoT 2005).

[16] Jorge Moratalla, Valeria de Castro, Marcos López Sanz, and Esperanza Marcos.
2012. A Gap-Analysis-Based Framework for Evolution and Modernization: Mod-
ernization of Domain Management at Red. es. In SRII Global Conference (SRII),
2012 Annual. IEEE, 343–352.

[17] Ricardo Perez-Castillo, Ignacio Garcia-Rodriguez de Guzman, Orlando Avila-
Garcia, and Mario Piattini. 2009. On the Use of ADM to Contextualize Data on
Legacy Source Code for Software Modernization. In Proceedings of the 2009 16th
Working Conference on Reverse Engineering (WCRE ’09). IEEE Computer Society,
Washington, DC, USA, 128–132. https://doi.org/10.1109/WCRE.2009.20

[18] Ricardo Pérez-Castillo, Ignacio García Rodríguez de Guzmán, Rafael Gómez-
Cornejo, Maria Fernandez-Ropero, and Mario Piattini. 2013. ANDRIU. A Tech-
nique for Migrating Graphical User Interfaces to Android (S).. In SEKE. 516–519.

[19] Ricardo Pérez-Castillo, Ignacio García-Rodríguez de Guzmán, and Mario Piat-
tini. 2010. Implementing Business Process Recovery Patterns through QVT Trans-
formations. Springer Berlin Heidelberg, Berlin, Heidelberg, 168–183. https:
//doi.org/10.1007/978-3-642-13688-7_12

[20] Roberto Rodríguez-Echeverría, José María Conejero, Pedro J. Clemente, Juan C.
Preciado, and Fernando Sánchez-Figueroa. 2012. Modernization of Legacy Web
Applications into Rich Internet Applications. Springer Berlin Heidelberg, Berlin,
Heidelberg, 236–250. https://doi.org/10.1007/978-3-642-27997-3_24

[21] Daniel San Martín Santibáñez, Rafael Serapilha Durelli, and Valter Vieira de
Camargo. 2015. A combined approach for concern identification in KDM models.
Journal of the Brazilian Computer Society 21, 1 (2015), 10.

[22] Harry M Sneed. 2005. Estimating the costs of a reengineering project. In Reverse
Engineering, 12th Working Conference on. IEEE.

[23] Feliu Trias, Valeria de Castro, Marcos López-Sanz, and Esperanza Marcos. 2014.
A Toolkit for ADM-based Migration: Moving from PHP Code to KDM Model in
the Context of CMS-based Web Applications. (2014).

[24] Feliu Trias, Valeria de Castro, Marcos Lopez-Sanz, and Esperanza Marcos.
2015. Migrating Traditional Web Applications to CMS-based Web Applica-
tions. Electron. Notes Theor. Comput. Sci. 314, C (June 2015), 23–44. https:
//doi.org/10.1016/j.entcs.2015.05.003

[25] Olegas Vasilecas and Kestutis Normantas. 2011. Deriving business rules from the
models of existing information systems. In Proceedings of the 12th International
Conference on Computer Systems and Technologies. ACM, 95–100.

[26] Christian Wagner. 2014. Model-Driven Software Migration: A Methodology (1 ed.).
Springer Vieweg. https://doi.org/10.1007/978-3-658-05270-6

[27] Claes Wohlin, Per Runeson, Martin Höst, Magnus Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[28] Christian Wulf, Sören Frey, and Wilhelm Hasselbring. 2012. A Three-Phase
Approach to Efficiently Transform C# into KDM. (2012).

https://github.com/Advanse-Lab/RUTE-K2J
http://www.eclipse.org/acceleo/
https://projects.eclipse.org/projects/modeling.mmt.atl
http://www.eclipse.org/epsilon/
https://www.omg.org/adm/vendor/list.htm
https://doi.org/10.1109/52.363157
https://doi.org/10.1007/978-3-642-02674-4_7
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://www.omg.org/adm/ADMTF%20Roadmap.pdf
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1109/WCRE.2009.20
https://doi.org/10.1007/978-3-642-13688-7_12
https://doi.org/10.1007/978-3-642-13688-7_12
https://doi.org/10.1007/978-3-642-27997-3_24
https://doi.org/10.1016/j.entcs.2015.05.003
https://doi.org/10.1016/j.entcs.2015.05.003
https://doi.org/10.1007/978-3-658-05270-6

	Abstract
	1 Introduction
	2 Background
	2.1 ADM & KDM
	2.2 Model Transformations

	3 Approach for Creating KDM2PSM Transformation Engines
	4 RUTE-K2J: The Transformation Engine
	4.1 Problems Faced

	5 Validation Setup
	5.1 Scoping
	5.2 Sample Selection
	5.3 Operation
	5.4 Results
	5.5 Threats to Validity

	6 Related Works
	7 Conclusion
	References

